parallele-programmierung/projekt/Solver.java

434 lines
14 KiB
Java

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.GridLayout;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicBoolean;
final public class Solver extends JPanel {
private static final long serialVersionUID = 1L;
// The default size of the labyrinth (i.e. unless program is invoked with size arguments):
private static final int DEFAULT_WIDTH_IN_CELLS = 1000;
private static final int DEFAULT_HEIGHT_IN_CELLS = 1000;
private static final int N_RUNS_HALF = 10; // #runs will be 2*N_RUNS_HALF + 1
// The grid defining the structure of the labyrinth
private final Labyrinth labyrinth;
// For each cell in the labyrinth: Has solve() visited it yet?
private boolean[][] visited; // initialized in solve()
private AtomicBoolean[][] visitedAtomic;
// determined by trial and error
private static final int DISTANCE_PER_TASK = DEFAULT_WIDTH_IN_CELLS * DEFAULT_HEIGHT_IN_CELLS / 128;
private Point[] solution = null; // set to solution path once that has been computed
public Solver(Labyrinth labyrinth) {
this.labyrinth = labyrinth;
}
public Solver(int width, int height) {
this(new Labyrinth(width, height));
}
private boolean visitedBefore(Point p) {
return visited[p.getX()][p.getY()];
}
private void visit(Point p) {
visited[p.getX()][p.getY()] = true;
}
/**
* @return Returns a path through the labyrinth from start to end as an array, or null if no solution exists
*/
public Point[] solve() {
// Initialize the search state: This must be done here to be part of the timing measurement
Point current = labyrinth.getStart();
ArrayDeque<Point> pathSoFar = new ArrayDeque<Point>(); // Path from start to just before current
visited = new boolean[labyrinth.getWidth()][labyrinth.getHeight()]; // initially all false
ArrayDeque<PointAndDirection> backtrackStack = new ArrayDeque<PointAndDirection>();
// Used as a stack: Branches not yet taken; solver will backtrack to these branching points later
// TODO: Is it faster to allocate backtrackStack with width*height elements right away?
// Search:
while (!labyrinth.isDestination(current)) {
Point next = null;
visit(current);
// Use first random unvisited neighbor as next cell, push others on the backtrack stack:
Direction[] dirs = Direction.values();
for (Direction directionToNeighbor: dirs) {
Point neighbor = current.getNeighbor(directionToNeighbor);
if ( labyrinth.hasPassage(current, directionToNeighbor)
&& !visitedBefore(neighbor)
&& ( !labyrinth.isBlindAlley(neighbor, directionToNeighbor.opposite)
|| labyrinth.isDestination(neighbor))) {
if (next == null) // 1st unvisited neighbor
next = neighbor;
else {
// 2nd or higher unvisited neighbor: Save neighbor as starting cell for a later backtracking
backtrackStack.push(new PointAndDirection(neighbor, directionToNeighbor.opposite));
// System.out.println("Pushing " + neighbor + " to the backtracking stack.");
}
}
}
// Advance to next cell, if any:
if (next != null) {
// System.out.println("Advancing from " + current + " to " + next);
pathSoFar.addLast(current);
current = next;
} else {
// current has no unvisited neighbor: Backtrack, if possible
if (backtrackStack.isEmpty())
return null; // No more backtracking avaible: No solution exists
// Backtrack: Continue with cell saved at latest branching point:
PointAndDirection pd = backtrackStack.pop();
current = pd.getPoint();
Point branchingPoint = current.getNeighbor(pd.getDirectionToBranchingPoint());
// System.out.println("Backtracking to " + branchingPoint);
// Remove the dead end from the top of pathSoFar, i.e. all cells after branchingPoint:
while (!pathSoFar.peekLast().equals(branchingPoint)) {
// System.out.println(" Going back before " + pathSoFar.peekLast());
pathSoFar.removeLast();
}
}
}
pathSoFar.addLast(current);
// Point[0] is only for making the return value have type Point[] (and not Object[]):
return pathSoFar.toArray(new Point[0]);
}
public Point[] solveConcurrently() {
// dummy origin direction for start
PointAndDirection start = new PointAndDirection(labyrinth.getStart(), null);
visitedAtomic = new AtomicBoolean[labyrinth.getWidth()][labyrinth.getHeight()];
for (int i = 0; i < visitedAtomic.length; i++) {
for (int j = 0; j < visitedAtomic[i].length; j++) {
visitedAtomic[i][j] = new AtomicBoolean(false);
}
}
ForkJoinPool pool = ForkJoinPool.commonPool();
ArrayDeque<Point> pathSoFar = new ArrayDeque<>();
ConcurrentSolverTask t = new ConcurrentSolverTask(start, pathSoFar, pool);
Point[] result = pool.invoke(t);
return result;
}
private class ConcurrentSolverTask extends RecursiveTask<Point[]> {
private ArrayDeque<PointAndDirection> backtrackStack;
private PointAndDirection start;
private HashSet<Point> visitedThisTask;
private ArrayDeque<Point> pathSoFar;
private ForkJoinPool pool;
private ArrayList<ConcurrentSolverTask> subtasks;
public ConcurrentSolverTask(PointAndDirection start, ArrayDeque<Point> pathSoFar, ForkJoinPool pool) {
this.start = start;
this.pathSoFar = pathSoFar;
this.pool = pool;
this.backtrackStack = new ArrayDeque<>();
this.subtasks = new ArrayList<>();
}
public Point[] compute() {
int currentLength = 0;
Point current = this.start.getPoint();
Point next;
Direction[] dirs = Direction.values();
while (!labyrinth.isDestination(current) && !Thread.interrupted()) {
// System.out.println("Visiting " + current);
next = null;
for (Direction dir : dirs) {
// don't check direction of origin
if (
current.equals(this.start.getPoint())
&& dir.equals(start.getDirectionToBranchingPoint())
) {
continue;
}
// check if labyrinth has passage in this direction
if (!labyrinth.hasPassage(current, dir)) {
continue;
}
Point neighbour = current.getNeighbor(dir);
// avoid blind alleys
if (
labyrinth.isBlindAlley(neighbour, dir.opposite)
&& !labyrinth.isDestination(neighbour)
) {
continue;
}
// check if that cell has been visited
// set visitedAtomic to true if it has not been visited
if (!visitedAtomic[neighbour.x][neighbour.y].compareAndSet(false, true)) {
continue;
}
// System.out.println("Found unvisited neighbour: " + neighbour);
if (currentLength >= DISTANCE_PER_TASK) {
// if we have reached the distance limit, create a subtask
ArrayDeque<Point> subPath = this.pathSoFar.clone();
subPath.addLast(current);
ConcurrentSolverTask subtask = new ConcurrentSolverTask(
new PointAndDirection(neighbour, dir.opposite),
subPath,
this.pool
);
subtask.fork();
subtasks.add(subtask);
} else {
if (next == null) {
// visit first unvisited neighbour next
next = neighbour;
// System.out.println("Visiting next.");
} else {
// push all other unvisited neighbours on backtrack stack to be checked later
this.backtrackStack.push(new PointAndDirection(neighbour, dir.opposite));
// System.out.println("Pushing to stack.");
}
}
}
// at least one unvisited neighbour found
if (next != null) {
pathSoFar.addLast(current);
current = next;
currentLength++;
}
if (next == null) {
// no unvisited neighbour found
// backtrack if possible
if (this.backtrackStack.isEmpty()) {
// no solution found from this point
// check for solutions in subtasks
// System.out.println("End of task reached - waiting for " + subtasks.size() + " subtasks");
for (ConcurrentSolverTask subtask : subtasks) {
Point[] subtaskResult = subtask.join();
if (subtaskResult != null) {
// found a solution in a subtask
return subtaskResult;
}
}
// no solution found
return null;
}
PointAndDirection pd = this.backtrackStack.pop();
current = pd.getPoint();
// Remove the dead end from the top of pathSoFar, i.e. all cells after branchingPoint:
Point branchingPoint = current.getNeighbor(pd.getDirectionToBranchingPoint());
while (!pathSoFar.isEmpty() && !pathSoFar.peekLast().equals(branchingPoint)) {
pathSoFar.removeLast();
currentLength--;
}
}
}
// parent thread has found solution or other interrupt
if (Thread.interrupted()) {
return null;
}
pathSoFar.addLast(current);
// solution found, interrupt subtasks
for (ConcurrentSolverTask subtask : subtasks) {
subtask.cancel(true);
}
return pathSoFar.toArray(new Point[0]);
}
}
@Override
protected void paintComponent(Graphics graphics) {
super.paintComponent(graphics);
// draw white background
graphics.setColor(Color.WHITE);
graphics.fillRect(0, 0, labyrinth.getWidth()*labyrinth.cell_size_pixels(), labyrinth.getHeight()*labyrinth.cell_size_pixels());
// draw solution path, if available
if (solution != null) {
graphics.setColor(Color.YELLOW);
for (Point p: solution)
/* // fill only white area between the walls instead of whole cell:
graphics.fillRect(p.getX()*CELL_PX+HALF_WALL_PX, p.getY()*CELL_PX+HALF_WALL_PX,
CELL_PX-2*HALF_WALL_PX, CELL_PX-2*HALF_WALL_PX);
*/
graphics.fillRect(p.getX()*labyrinth.cell_size_pixels(), p.getY()*labyrinth.cell_size_pixels(),
labyrinth.cell_size_pixels(), labyrinth.cell_size_pixels());
}
// draw walls
labyrinth.display(graphics);
}
public void printSolution() {
System.out.print("Solution: ");
for (Point p: solution)
System.out.print(p);
System.out.println();
}
public void displaySolution() {
repaint();
}
private static Solver makeAndSaveSolver(String[] args) {
// Construct solver: Either read it from a file, or create a new one
if (args.length >= 1 && args[0].endsWith(".ser")) {
// 1st argument is name of file with serialized labyrinth: Ignore other arguments
// and create a solver for the labyrinth from that file:
ObjectInputStream ois;
try {
ois = new ObjectInputStream(new FileInputStream(args[0]));
Labyrinth labyrinth = (Labyrinth)ois.readObject();
ois.close();
return new Solver(labyrinth);
} catch (Exception e) {
System.out.println(e);
return null;
}
} else {
// Create solver for new, random labyrinth:
int width = args.length >= 1 ? (Integer.parseInt(args[0])) : DEFAULT_WIDTH_IN_CELLS;
int height = args.length >= 2 ? (Integer.parseInt(args[1])) : DEFAULT_HEIGHT_IN_CELLS;
Solver solver = new Solver(width, height);
// Save labyrinth to file (may be reused in future program executions):
try {
ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("labyrinth.ser"));
oos.writeObject(solver.labyrinth);
oos.close();
} catch (Exception e) {
System.out.println(e);
}
return solver;
}
}
private static void displayLabyrinth(Solver solver) {
JFrame frame = new JFrame("Sequential labyrinth solver");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// TODO: Window is initially displayed somewhat smaller than
// the indicated frame size, therefore use width+5 and height+5:
frame.setSize((solver.labyrinth.getWidth()+5) * solver.labyrinth.cell_size_pixels(),
(solver.labyrinth.getHeight()+5) * solver.labyrinth.cell_size_pixels());
// Put a scroll pane around the labyrinth frame if the latter is too large
// (by Joern Lenselink)
Dimension displayDimens = java.awt.GraphicsEnvironment.getLocalGraphicsEnvironment().getMaximumWindowBounds().getSize();
Dimension labyrinthDimens = frame.getSize();
if(labyrinthDimens.height > displayDimens.height) {
JScrollPane scroll = new JScrollPane();
solver.setBackground(Color.LIGHT_GRAY);
frame.getContentPane().add(scroll);
JPanel borderlayoutpanel = new JPanel();
borderlayoutpanel.setBackground(Color.darkGray);
scroll.setViewportView(borderlayoutpanel);
borderlayoutpanel.setLayout(new BorderLayout(0, 0));
JPanel columnpanel = new JPanel();
borderlayoutpanel.add(columnpanel, BorderLayout.NORTH);
columnpanel.setLayout(new GridLayout(0, 1, 0, 1));
columnpanel.setOpaque(false);
columnpanel.setBackground(Color.darkGray);
columnpanel.setSize(labyrinthDimens.getSize());
columnpanel.setPreferredSize(labyrinthDimens.getSize());
columnpanel.add(solver);
} else {
// No scroll pane needed:
frame.getContentPane().add(solver);
}
frame.setVisible(true); // will draw the labyrinth (without solution)
}
/**
*
* @param args If the first argument is a file name ending in .ser, the serialized labyrinth in that file
* is used; else the first two arguments are optional numbers giving the width and height of a new
* labyrinth to be constructed. Then the labyrinth is solved and displayed (unless too large).
* This is run a certain number of times and then the median run time is printed.
*/
public static void main(String[] args) {
long[] runTimes = new long[2*N_RUNS_HALF + 1];
for (int run = 0; run < 2*N_RUNS_HALF + 1; ++run) {
Solver solver = makeAndSaveSolver(args);
if (solver.labyrinth.smallEnoughToDisplay()) {
displayLabyrinth(solver);
}
long startTime = System.currentTimeMillis();
solver.solution = solver.solveConcurrently();
long endTime = System.currentTimeMillis();
if (solver.solution == null)
System.out.println("No solution exists.");
else {
System.out.println("Computed sequential solution of length " + solver.solution.length + " to labyrinth of size " +
solver.labyrinth.getWidth() + "x" + solver.labyrinth.getHeight() + " in " + (endTime - startTime) + "ms.");
runTimes[run] = endTime - startTime;
if (solver.labyrinth.smallEnoughToDisplay()) {
solver.displaySolution();
solver.printSolution();
}
if (solver.labyrinth.checkSolution(solver.solution))
System.out.println("Solution correct :-)");
else
System.out.println("Solution incorrect :-(");
}
}
Arrays.sort(runTimes);
System.out.println("Median run time was " + runTimes[N_RUNS_HALF] + " ms.");
}
}