parallele-programmierung/projekt/Labyrinth.java

261 lines
9.2 KiB
Java

/*
* A labyrinth generated using the depth-first algorithm
* (www.astrolog.org/labyrnth/algrithm.htm), with a start point and end point
* for a search and with a display (unless too large) as ASCII graphics and
* Swing graphics.
* Source of labyrinth representation and ASCII output generation:
* http://rosettacode.org/wiki/Maze#Java
*/
import java.awt.Color;
import java.awt.Graphics;
import java.io.Serializable;
import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.Collections;
public final class Labyrinth implements Serializable{
private static final long serialVersionUID = 1L;
/**
* Serialized state of a labyrinth with size, passages, start and end
* (without search state) and with all information defining its graphic
* and textual display.
*/
private final int width; // total number of cells in x direction
private final int height; // total number of cells in y direction
private final Point start; // starting point of the search
private final Point end; // end point of the search
private final byte[][] passages;
/*
* Each array element represents a cell in the labyrinth with the passages possible from
* this cell. Its four least significant bits are interpreted as one flag for each direction
* (see enum Direction for which bit means which direction) indicating whether
* there is a passage from this cell in that direction (note that passages
* and walls are not cells, but represented indirectly by these flags).
* Initially all cells are 0, i.e. have no passage from them (i.e. surrounded
* by walls on all their four sides). Note that two-way passages appear as opposite
* bits in both the source and destination cell; thus, this data structure supports
* one-way passages, too, by setting a bit in the source cell only (however, one-way
* passages are not used in PAR).
*/
// When generating the labyrinth and considering whether to create a passage to some neighbor cell, create a
// passage to a cell that is already accessible on another path (i.e. create a cycle) with this probability:
private static final double CYCLE_CREATION_PROBABILITY = 0.01;
private static final int CELL_PX = 10; // width and length of the labyrinth cells in pixels
private static final int HALF_WALL_PX = 2; // thickness/2 of the labyrinth walls in pixels
// labyrinths with more pixels than this (in one or both directions) will not be graphically displayed:
private static final int MAX_PX_TO_DISPLAY = 1000;
public Labyrinth(int width, int height) {
this.width = width;
this.height = height;
// Always start in the center of the labyrinth:
start = new Point(width/2, height/2);
// Randomly pick a cell on the boundary as the end point:
int endIndex = (int)((2*width + 2*height) * Math.random());
int endX;
int endY;
// Try the four edges of the grid, starting at the upper edge,
// proceeding clockwise to the left edge:
if (endIndex < width) { // upper edge
endX = endIndex;
endY = 0;
} else {
if (endIndex < width + height) { // right edge
endX = width-1;
endY = endIndex - width;
} else {
if (endIndex < 2*width + height) { // lower edge
endX = endIndex - width - height;
endY = height-1;
} else { // left edge
endX = 0;
endY = endIndex - 2*width - height;
}
}
}
end = new Point(endX, endY);
passages = new byte[width][height]; // initially all 0 (see comment at declaration of passages)
makePassages();
}
public int getWidth() {
return width;
}
public int getHeight() {
return height;
}
public Point getStart() {
return start;
}
public boolean hasPassage(Point from, Direction directionToNeighbor) {
return contains(from) && (passages[from.getX()][from.getY()] & directionToNeighbor.bit) != 0;
}
public boolean hasPassage(Point from, Point to) {
if (!contains(from) || !contains(to)) {
return false;
}
if (from.getNeighbor(Direction.N).equals(to))
return (passages[from.getX()][from.getY()] & Direction.N.bit) != 0;
if (from.getNeighbor(Direction.S).equals(to))
return (passages[from.getX()][from.getY()] & Direction.S.bit) != 0;
if (from.getNeighbor(Direction.E).equals(to))
return (passages[from.getX()][from.getY()] & Direction.E.bit) != 0;
if (from.getNeighbor(Direction.W).equals(to))
return (passages[from.getX()][from.getY()] & Direction.W.bit) != 0;
return false; // To suppress warning about undefined return value
}
public boolean contains(Point p) {
return 0 <= p.getX() && p.getX() < width &&
0 <= p.getY() && p.getY() < height;
}
public boolean isDestination(Point p) {
return p.equals(end);
}
/**
* Return whether <code>p</code>, when coming from <code>fromDir</code>, is a blind alley.
*/
public boolean isBlindAlley(Point p, Direction fromDir) {
int directionBitsExceptFromDir = Direction.allDirectionBits & ~fromDir.bit;
return (passages[p.getX()][p.getY()] & directionBitsExceptFromDir) == 0;
}
/**
* Generate a labyrinth (with or without cycles, depending on CYCLE_CREATION_PROBABILITY)
* using the depth-first algorithm (www.astrolog.org/labyrnth/algrithm.htm (sic!))
*/
private void makePassages() {
ArrayDeque<Point> pointsToDo = new ArrayDeque<Point>();
Point current;
pointsToDo.push(getStart());
while (!pointsToDo.isEmpty()) {
current = pointsToDo.pop();
int cx = current.getX();
int cy = current.getY();
Direction[] dirs = Direction.values();
Collections.shuffle(Arrays.asList(dirs));
// For all unvisited neighboring cells in random order:
// Make a passage from the current cell to that neighbor
for (Direction dir : dirs) {
// Pick random neighbor of current cell as new cell (nx, ny)
Point neighbor = current.getNeighbor(dir);
int nx = neighbor.getX();
int ny = neighbor.getY();
if (contains(neighbor) // If neighbor is still in the labyrinth ...
&& ( passages[nx][ny] == 0 // ... and has no passage yet, i.e. has not been visited yet during generation
|| Math.random() < CYCLE_CREATION_PROBABILITY )) { // ... or creating a cycle is OK
// Make a two-way passage, i.e. from current to neighbor and from neighbor to current:
passages[cx][cy] |= dir.bit;
passages[nx][ny] |= dir.opposite.bit;
// Remember to continue from this neighbor later on
pointsToDo.push(neighbor);
}
}
}
}
public void print() {
System.out.println("Labyrinth with start " + start + " and end " + end);
for (int i = 0; i < height; i++) {
// draw the north edges
for (int j = 0; j < width; j++) {
System.out.print((passages[j][i] & Direction.N.bit) == 0 ? "+---" : "+ ");
}
System.out.println("+");
// draw the west edges
for (int j = 0; j < width; j++) {
System.out.print((passages[j][i] & Direction.W.bit) == 0 ? "| " : " ");
}
// draw the far east edge
System.out.println("|");
}
// draw the bottom line
for (int j = 0; j < width; j++) {
System.out.print("+---");
}
System.out.println("+");
}
public int cell_size_pixels() {
return CELL_PX;
}
public boolean smallEnoughToDisplay() {
return width*CELL_PX <= MAX_PX_TO_DISPLAY && height*CELL_PX <= MAX_PX_TO_DISPLAY;
}
public void display(Graphics graphics) {
// draw start and end cell in special colors (covering start and end cell of the solution path)
graphics.setColor(Color.RED);
graphics.fillRect(start.getX()*CELL_PX, start.getY()*CELL_PX, CELL_PX, CELL_PX);
graphics.setColor(Color.GREEN);
graphics.fillRect(end.getX()*CELL_PX, end.getY()*CELL_PX, CELL_PX, CELL_PX);
// draw black walls (covering part of the solution path)
graphics.setColor(Color.BLACK);
for(int x = 0; x < width; ++x) {
for(int y = 0; y < height; ++y) {
// draw north edge of each cell (together with south edge of cell above)
if ((passages[x][y] & Direction.N.bit) == 0)
// y-HALF_WALL_PX will be half out of labyrinth for x==0 row,
// but that does not hurt the picture thanks to automatic cropping
graphics.fillRect(x*CELL_PX, y*CELL_PX-HALF_WALL_PX, CELL_PX, 2*HALF_WALL_PX);
// draw west edge of each cell (together with east edge of cell to the left)
if ((passages[x][y] & Direction.W.bit) == 0)
// x-HALF_WALL_PX will be half out of labyrinth for y==0 column,
// but that does not hurt the picture thanks to automatic cropping
graphics.fillRect(x*CELL_PX-HALF_WALL_PX, y*CELL_PX, 2*HALF_WALL_PX, CELL_PX);
}
}
// draw east edge of labyrinth
graphics.fillRect(width*CELL_PX, 0, HALF_WALL_PX, height*CELL_PX);
// draw south edge of labyrinth
graphics.fillRect(0, height*CELL_PX-HALF_WALL_PX, width*CELL_PX, HALF_WALL_PX);
}
public boolean checkSolution(Point solution[]) {
Point from = solution[0];
if (!from.equals(start)) {
System.out.println("checkSolution fails because the first cell is" + from + ", but not " + start);
return false;
}
for (int i = 1; i < solution.length; ++i) {
Point to = solution[i];
if (!hasPassage(from, to)) {
System.out.println("checkSolution fails because there is no passage from " + from + " to " + to);
return false;
}
from = to;
}
if (!from.equals(end)) {
System.out.println("checkSolution fails because the last cell is" + from + ", but not " + end);
return false;
}
return true;
}
}