computer-grafik-1/u04-cube/main.c

395 lines
8.7 KiB
C

#include <stdio.h>
#include <GL/glew.h>
#include <GLFW/glfw3.h>
#include "vertexShader.c"
#include "fragmentShader.c"
#include <stdlib.h>
#include <math.h>
#include <string.h>
#define RESTART 345678
typedef struct {
GLfloat x;
GLfloat y;
GLfloat z;
} Point;
GLuint program;
GLuint vao;
GLuint indicesBufferObject;
GLfloat aspectRatio = 1.0f;
GLfloat step = 0.0f;
Point corners[] = {
{ 1.0f, 1.0f, 1.0f },
{ 1.0f, 1.0f, -1.0f },
{ 1.0f, -1.0f, 1.0f },
{ 1.0f, -1.0f, -1.0f },
{ -1.0f, 1.0f, 1.0f },
{ -1.0f, 1.0f, -1.0f },
{ -1.0f, -1.0f, 1.0f },
{ -1.0f, -1.0f, -1.0f }
};
GLuint indices[] = {
0, 1,
0, 2,
0, 4,
1, 3,
1, 5,
2, 3,
2, 6,
3, 7,
4, 5,
4, 6,
5, 7,
6, 7
};
// CREATE 4x4 IDENTITY MATRIX
void identity(GLfloat* out) {
for (int i = 0; i < 16; i++) {
out[i] = (i % 4 == i / 4);
}
}
// CREATE 4x4 TRANSLATION MATRIX
void translation(GLfloat* out, GLfloat* v) {
identity(out);
for (int i = 0; i < 3; i++) {
out[3 * 4 + i] = v[i];
}
}
// CREATE 4x4 SCALING MATRIX
void scaling(GLfloat* out, GLfloat* v) {
identity(out);
for (int i = 0; i < 3; i++) {
out[i * 5] = v[i];
}
}
// CREATE 4x4 ROTATION MATRIX AROUND Z AXIS
/* cos a -sin a 0 0
* sin a cos a 0 0
* 0 0 1 0
* 0 0 0 1
*/
void rotationZ(GLfloat* out, GLfloat angle) {
identity(out);
out[0] = cos(angle);
out[1] = sin(angle);
out[4] = -sin(angle);
out[5] = cos(angle);
}
// CREATE 4x4 ROTATION MATRIX AROUND Y AXIS
void rotationY(GLfloat* out, GLfloat angle) {
identity(out);
out[0] = cos(angle);
out[2] = -sin(angle);
out[8] = sin(angle);
out[10] = cos(angle);
}
// CREATE 4x4 ROTATION MATRIX AROUND Y AXIS
void rotationX(GLfloat* out, GLfloat angle) {
identity(out);
out[5] = cos(angle);
out[6] = sin(angle);
out[9] = -sin(angle);
out[10] = cos(angle);
}
// MULTIPLY ANY TO MATRICES
void multiplyAny(GLfloat* A, GLfloat* B, GLfloat* out, int wA, int hA, int wB) {
int sizeOut = hA * wB;
GLfloat* result = (GLfloat*) malloc(sizeOut * sizeof(GLfloat));
for (int i = 0; i < sizeOut; i++) {
result[i] = 0;
// printf("%d: ", i);
for (int j = 0; j < wA; j++) {
// printf("%d : %f ", j * hA + i % hA, A[j * hA + i % hA]);
result[i] += A[j * hA + i % hA] * B[j + i / hA * wB];
}
// printf("\n");
}
memcpy(out, result, sizeOut * sizeof(GLfloat));
free(result);
}
// MULTIPLY TWO 4x4 MATRICES
void multiply(GLfloat* A, GLfloat* B, GLfloat* out) {
multiplyAny(A, B, out, 4, 4, 4);
}
// MULTIPLY 4x4 MATRIX WITH VEC4
void multiplyV(GLfloat* M, GLfloat* v, GLfloat* out) {
multiplyAny(M, v, out, 4, 4, 1);
}
// MULTIPLY in WITH TRANSLATION MATRIX OF v
void translate(GLfloat* out, GLfloat* in, GLfloat* v) {
GLfloat translationMatrix[16];
translation(translationMatrix, v);
multiply(translationMatrix, in, out);
}
// MULTIPLY in WITH SCALING MATRIX OF v
void scale(GLfloat* out, GLfloat* in, GLfloat* v) {
GLfloat scalingMatrix[16];
scaling(scalingMatrix, v);
multiply(scalingMatrix, in, out);
}
// MULTIPLY in WITH ROTATION MATRIX OF a AROUND Z AXIS
void rotateZ(GLfloat* out, GLfloat* in, GLfloat angle) {
GLfloat rotationMatrix[16];
rotationZ(rotationMatrix, angle);
multiply(rotationMatrix, in, out);
}
// MULTIPLY in WITH ROTATION MATRIX OF a AROUND Y AXIS
void rotateY(GLfloat* out, GLfloat* in, GLfloat angle) {
GLfloat rotationMatrix[16];
rotationY(rotationMatrix, angle);
multiply(rotationMatrix, in, out);
}
// MULTIPLY in WITH ROTATION MATRIX OF a AROUND X AXIS
void rotateX(GLfloat* out, GLfloat* in, GLfloat angle) {
GLfloat rotationMatrix[16];
rotationX(rotationMatrix, angle);
multiply(rotationMatrix, in, out);
}
void init(void) {
// create and compile vertex shader
GLchar *vertexText = malloc(vertexShader_glsl_len);
memcpy(vertexText, vertexShader_glsl, vertexShader_glsl_len);
const GLchar *vertexTextConst = vertexText;
GLuint vertexShader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertexShader, 1, &vertexTextConst, &vertexShader_glsl_len);
glCompileShader(vertexShader);
GLint status;
glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &status);
if (!status) {
printf("Error compiling vertex shader: ");
GLchar infoLog[1024];
glGetShaderInfoLog(vertexShader, 1024, NULL, infoLog);
printf("%s",infoLog);
}
free(vertexText);
vertexText = NULL;
vertexTextConst = NULL;
// create and compile fragment shader
GLchar *fragmentText = malloc(fragmentShader_glsl_len);
memcpy(fragmentText, fragmentShader_glsl, fragmentShader_glsl_len);
const GLchar *fragmentTextConst = fragmentText;
GLuint fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragmentShader, 1, &fragmentTextConst, &fragmentShader_glsl_len);
glCompileShader(fragmentShader);
glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &status);
if (!status) {
printf("Error compiling fragment shader: ");
GLchar infoLog[1024];
glGetShaderInfoLog(fragmentShader, 1024, NULL, infoLog);
printf("%s",infoLog);
}
free(fragmentText);
fragmentText = NULL;
fragmentTextConst = NULL;
// create and link shader program
program = glCreateProgram();
glAttachShader(program, vertexShader);
glAttachShader(program, fragmentShader);
glLinkProgram(program);
glGetProgramiv(program, GL_LINK_STATUS, &status);
if (!status) {
printf("Error linking program: ");
GLchar infoLog[1024];
glGetProgramInfoLog(program, 1024, NULL, infoLog);
printf("%s",infoLog);
}
glValidateProgram(program);
glGetProgramiv(program, GL_VALIDATE_STATUS, &status);
if (!status) {
printf("Error validating program: ");
GLchar infoLog[1024];
glGetProgramInfoLog(program, 1024, NULL, infoLog);
printf("%s",infoLog);
}
GLuint triangleVertexBufferObject;
glGenBuffers(1, &triangleVertexBufferObject);
glBindBuffer(GL_ARRAY_BUFFER, triangleVertexBufferObject);
glBufferData(GL_ARRAY_BUFFER, sizeof(corners), corners, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
// create vertex array object
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
glBindBuffer(GL_ARRAY_BUFFER, triangleVertexBufferObject);
glVertexAttribPointer(
0,
3,
GL_FLOAT,
GL_FALSE,
sizeof(Point),
0
);
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
// ENABLE BACKFACE CULLING
glFrontFace(GL_CW);
glEnable(GL_CULL_FACE);
glEnable(GL_PRIMITIVE_RESTART);
glPrimitiveRestartIndex(RESTART);
// DEFINE INDEX ARRAY FOR ELEMENT DRAWING
glGenBuffers(1, &indicesBufferObject);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indicesBufferObject);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
}
void draw(void) {
glClear(GL_COLOR_BUFFER_BIT);
glUseProgram(program);
glBindVertexArray(vao);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indicesBufferObject);
step += 0.001f;
if (step > 1.0f) step -= 1.0f;
GLfloat M[16];
GLfloat scaleFactor = sin(step * 3.14159f * 2) * 0.1f + 0.2f;
// GLfloat scaleFactor = 0.2f;
GLfloat scaleBy[3] = {scaleFactor / aspectRatio, scaleFactor, scaleFactor};
GLfloat translateBy[3] = {sin(step * 3.14159f * 4.0f), 0.0f, 0.0f};
identity(M);
rotateY(M, M, step * 3.14159f * 2);
rotateX(M, M, step * 3.14159f * 2 + 1.0f);
rotateZ(M, M, step * 3.14159f * 2 + 0.5f);
scale(M, M, scaleBy);
// translate(M, M, translateBy);
glUniformMatrix4fv(glGetUniformLocation(program, "transformation"), 1, GL_FALSE, M);
glDrawElements(GL_LINES, sizeof(indices) / sizeof(GLuint), GL_UNSIGNED_INT, NULL);
}
void framebuffer_size_callback(GLFWwindow *window, int width, int height) {
glViewport(0, 0, width, height);
aspectRatio = (float)width / height;
}
int main(void) {
// GLfloat A[16];
// GLfloat B[16];
// GLfloat v[] = {1.0f, 2.0f, 3.0f};
// GLfloat angle = 1.5f;
// identity(A);
// identity(B);
// multiplyAny(A, B, A, 4, 4, 4);
// translate(A, A, v);
// scale(A, A, v);
// rotateZ(A, A, angle);
// // DEBUG
// // PRINT COLUMN MAJOR MATRIX
// for (int i = 0; i < 16; i++) {
// if (i != 0 && i % 4 == 0) printf("\n");
// // cursed stuff to print column major form
// printf("%.2f ", A[i % 4 * 4 + i / 4]);
// }
// printf("\n");
// // ------
// return 0;
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
GLFWwindow *window = glfwCreateWindow(600, 600, "Computergrafik 1", NULL, NULL);
if (!window) {
printf("Failed to create window\n");
glfwTerminate();
return -1;
}
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glfwMakeContextCurrent(window);
glewInit();
printf("OpenGL version supported by this platform (%s):\n", glGetString(GL_VERSION));
init();
while (!glfwWindowShouldClose(window)) {
draw();
glfwSwapBuffers(window);
glfwPollEvents();
}
glfwTerminate();
return 0;
}