computer-grafik-1/u08-2/main.c

458 lines
11 KiB
C

#include <stdio.h>
#include <GL/glew.h>
#include <GLFW/glfw3.h>
#include "vertexShader.c"
#include "fragmentShader.c"
#include "matrixMath.h"
#include "transformation.h"
#include "wavefrontobj.h"
#define STB_IMAGE_IMPLEMENTATION
#include "../lib/stb_image.h"
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <stdbool.h>
GLuint program;
GLuint vao;
#define NUM_TEXTURES 5
#define DAY 0
#define NIGHT 1
#define CLOUDS 2
#define OCEAN 3
#define NORMAL 4
int flipFlag = 1;
GLuint textures[NUM_TEXTURES];
char* textureFiles[NUM_TEXTURES] = {
"../texture/earth/day.png",
"../texture/earth/night.png",
"../texture/earth/clouds.png",
"../texture/earth/ocean_mask.png",
"../texture/earth/normal.png"
};
int numFaces = 0;
bool exitRequested = false;
GLFWwindow* window;
GLfloat aspectRatio = 1.0f;
double timeBetweenUpdates = 0.2f;
double timeSinceUpdate = 0.0f;
int framesSinceUpdate = 0;
GLfloat step = 0.0f;
const GLfloat pi = 3.14159f;
vec3 cameraPosition = {0.0f, 3.0f, 5.5f};
char* defaultModel = "../obj/earth.obj";
char* model;
// input handler for camera movement
void handleInputs(double deltaTime) {
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS) {
cameraPosition.z += deltaTime * 10;
}
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS) {
cameraPosition.z -= deltaTime * 10;
}
if (glfwGetKey(window, GLFW_KEY_SPACE) == GLFW_PRESS) {
cameraPosition.y += deltaTime * 10;
}
if (glfwGetKey(window, GLFW_KEY_LEFT_SHIFT) == GLFW_PRESS) {
cameraPosition.y -= deltaTime * 10;
}
}
// input handler to quit with ESC
void keyboardHandler(GLFWwindow* window, int key, int scancode, int action, int mods) {
if (action == GLFW_PRESS) {
if (key == GLFW_KEY_ESCAPE) {
exitRequested = true;
}
}
}
void loadTexture(char* textureFile, GLuint* texture) {
int width, height, nrChannels;
unsigned char* image = stbi_load(textureFile, &width, &height, &nrChannels, 0);
// default: 3 channels, RGB
GLenum channelFormats[] = {
0,
GL_RED,
GL_RG,
GL_RGB,
GL_RGBA
};
GLenum format = channelFormats[nrChannels];
glGenTextures(1, texture);
glBindTexture(GL_TEXTURE_2D, *texture);
printf("%s - %d\n", textureFile, nrChannels);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, format, GL_UNSIGNED_BYTE, image);
// load texture using previously determined format ----- ^^^^^^
glGenerateMipmap(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
stbi_image_free(image);
}
void init(void) {
// create and compile vertex shader
const GLchar *vertexTextConst = vertexShader_glsl;
GLuint vertexShader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertexShader, 1, &vertexTextConst, &vertexShader_glsl_len);
glCompileShader(vertexShader);
GLint status;
glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &status);
if (!status) {
printf("Error compiling vertex shader: ");
GLchar infoLog[1024];
glGetShaderInfoLog(vertexShader, 1024, NULL, infoLog);
printf("%s",infoLog);
}
vertexTextConst = NULL;
// create and compile fragment shader
const GLchar *fragmentTextConst = fragmentShader_glsl;
GLuint fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragmentShader, 1, &fragmentTextConst, &fragmentShader_glsl_len);
glCompileShader(fragmentShader);
glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &status);
if (!status) {
printf("Error compiling fragment shader: ");
GLchar infoLog[1024];
glGetShaderInfoLog(fragmentShader, 1024, NULL, infoLog);
printf("%s",infoLog);
}
// create and link shader program
program = glCreateProgram();
glAttachShader(program, vertexShader);
glAttachShader(program, fragmentShader);
glLinkProgram(program);
glGetProgramiv(program, GL_LINK_STATUS, &status);
if (!status) {
printf("Error linking program: ");
GLchar infoLog[1024];
glGetProgramInfoLog(program, 1024, NULL, infoLog);
printf("%s",infoLog);
}
glValidateProgram(program);
glGetProgramiv(program, GL_VALIDATE_STATUS, &status);
if (!status) {
printf("Error validating program: ");
GLchar infoLog[1024];
glGetProgramInfoLog(program, 1024, NULL, infoLog);
printf("%s",infoLog);
}
// --------------- READ MODEL FILE
ParsedObjFile teapot = readObjFile(model);
numFaces = teapot.length;
// write faces to buffer
GLuint triangleVertexBufferObject;
glGenBuffers(1, &triangleVertexBufferObject);
glBindBuffer(GL_ARRAY_BUFFER, triangleVertexBufferObject);
glBufferData(GL_ARRAY_BUFFER, teapot.length * sizeof(face), teapot.faces, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
stbi_set_flip_vertically_on_load(flipFlag);
// -------------- READ TEXTURE FILES
for (int i = 0; i < NUM_TEXTURES; i++) {
loadTexture(textureFiles[i], &textures[i]);
}
// create vertex array object
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
glBindBuffer(GL_ARRAY_BUFFER, triangleVertexBufferObject);
// vertex positions
glVertexAttribPointer(
0,
3,
GL_FLOAT,
GL_FALSE,
sizeof(vertex),
0
);
glEnableVertexAttribArray(0);
// vertex normals
glVertexAttribPointer(
1,
3,
GL_FLOAT,
GL_FALSE,
sizeof(vertex),
(void*) offsetof(vertex, normal)
);
glEnableVertexAttribArray(1);
// vertex texture coordinates
glVertexAttribPointer(
2,
2,
GL_FLOAT,
GL_FALSE,
sizeof(vertex),
(void*) offsetof(vertex, texture)
);
glEnableVertexAttribArray(2);
// face tangents
glVertexAttribPointer(
3,
3,
GL_FLOAT,
GL_FALSE,
sizeof(vertex),
(void*) offsetof(vertex, tangent)
);
glEnableVertexAttribArray(3);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
// ENABLE BACKFACE CULLING
glFrontFace(GL_CCW);
glEnable(GL_CULL_FACE);
// ENABLE DEPTH BUFFER
glEnable(GL_DEPTH_TEST);
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
}
void updateStats() {
printf("\rFPS: %.1f", framesSinceUpdate / timeSinceUpdate);
printf(" - Camera Position: [%f, %f, %f]", cameraPosition.x, cameraPosition.y, cameraPosition.z);
fflush(stdout);
}
void draw(void) {
// FPS Counter
framesSinceUpdate++;
double deltaTime = glfwGetTime();
timeSinceUpdate += deltaTime;
glfwSetTime(0.0f);
if (timeSinceUpdate >= timeBetweenUpdates) {
updateStats();
timeSinceUpdate = 0.0f;
framesSinceUpdate = 0;
}
// camera movement
handleInputs(deltaTime);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glUseProgram(program);
glBindVertexArray(vao);
// step for rotations
// counts up to 1.0 and then resets back to 0.0 forever
step += deltaTime / 15;
if (step > 1.0f) step -= 1.0f;
if (step < 0.0f) step += 1.0f;
// step multiplied by pi * 2 for use in rotation and trig functions
GLfloat stepi = step * pi * 2;
// ------------- MODEL TRANSFORMATION ---------------------
// SCALE -> ROTATE -> TRANSLATE
mat4 modelTransformation;
identity(&modelTransformation);
rotateY(&modelTransformation, &modelTransformation, stepi * 2);
rotateZ(&modelTransformation, &modelTransformation, -23.5f / 180 * pi);
// ------------- VIEWING TRANSFORMATION -------------------
vec3 origin = {0.0f, 0.0f, 0.0f};
vec3 up = {0.0f, 1.0f, 0.0f};
mat4 viewingTransformation;
lookAt(&viewingTransformation, &cameraPosition, &origin, &up);
// -------------- PROJECTION TRANSFORMATION ----------------
mat4 projectionTransformation;
GLfloat near = 0.1f;
GLfloat far = 20.0f;
perspectiveProjection(&projectionTransformation, near, far);
// -------------- NORMALISATION TRANSFORMATION -------------
mat4 normalisationTransformation;
GLfloat fovy = pi / 2;
normalisedDeviceCoordinatesFov(&normalisationTransformation, fovy, aspectRatio, near, far);
mat4 modelView;
identity(&modelView);
multiply(&modelView, &modelTransformation, &modelView);
multiply(&modelView, &viewingTransformation, &modelView);
mat4 projection;
identity(&projection);
multiply(&projection, &projectionTransformation, &projection);
multiply(&projection, &normalisationTransformation, &projection);
// calculate matrix for normals
mat3 normalModelView;
mat3From4(&normalModelView, &modelView);
mat3Inverse(&normalModelView, &normalModelView);
mat3Transpose(&normalModelView, &normalModelView);
// send transformation matrix to shader
glUniformMatrix4fv(glGetUniformLocation(program, "modelView"), 1, GL_FALSE, (GLfloat*)&modelView);
glUniformMatrix3fv(glGetUniformLocation(program, "normalModelView"), 1, GL_FALSE, (GLfloat*)&normalModelView);
glUniformMatrix4fv(glGetUniformLocation(program, "projection"), 1, GL_FALSE, (GLfloat*)&projection);
vec4 lightPosition = {cos(stepi) * 1000.0f, 0.0f, sin(stepi) * 1000.0f, 1.0f};
multiplyAny((GLfloat *)&lightPosition, (GLfloat *)&viewingTransformation, (GLfloat *)&lightPosition, 4, 4, 1);
glUniform3f(glGetUniformLocation(program, "lightPosition"), lightPosition.x, lightPosition.y, lightPosition.z);
// SET MATERIAL DATA
glUniform1f(glGetUniformLocation(program, "shininess"), 60.0f * 4.0f);
// SET LIGHT DATA
glUniform4f(glGetUniformLocation(program, "lightColor"), 1.0f, 1.0f, 1.0f, 1.0f);
glUniform4f(glGetUniformLocation(program, "ambientLight"), 0.05f, 0.05f, 0.05f, 1.0f);
// BIND TEXTURES
GLuint textureLocation;
textureLocation = glGetUniformLocation(program, "day");
glUniform1i(textureLocation, 13);
glActiveTexture(GL_TEXTURE13);
glBindTexture(GL_TEXTURE_2D, textures[DAY]);
textureLocation = glGetUniformLocation(program, "night");
glUniform1i(textureLocation, 14);
glActiveTexture(GL_TEXTURE14);
glBindTexture(GL_TEXTURE_2D, textures[NIGHT]);
textureLocation = glGetUniformLocation(program, "clouds");
glUniform1i(textureLocation, 15);
glActiveTexture(GL_TEXTURE15);
glBindTexture(GL_TEXTURE_2D, textures[CLOUDS]);
textureLocation = glGetUniformLocation(program, "ocean");
glUniform1i(textureLocation, 16);
glActiveTexture(GL_TEXTURE16);
glBindTexture(GL_TEXTURE_2D, textures[OCEAN]);
textureLocation = glGetUniformLocation(program, "normalMap");
glUniform1i(textureLocation, 17);
glActiveTexture(GL_TEXTURE17);
glBindTexture(GL_TEXTURE_2D, textures[NORMAL]);
// draw!!1
glDrawArrays(GL_TRIANGLES, 0, numFaces * 3);
}
// change viewport size and adjust aspect ratio when changing window size
void framebuffer_size_callback(GLFWwindow *window, int width, int height) {
glViewport(0, 0, width, height);
aspectRatio = (float)width / height;
}
int main(int argc, char **argv) {
if (argc >= 2) {
model = argv[1];
} else {
model = defaultModel;
}
// initialise window
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
window = glfwCreateWindow(700, 700, "Computergrafik 1", NULL, NULL);
if (!window) {
printf("Failed to create window\n");
glfwTerminate();
return -1;
}
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glfwMakeContextCurrent(window);
// disable framerate cap
glfwSwapInterval(0);
// register keyboard event handler
glfwSetKeyCallback(window, keyboardHandler);
// initialise glew
glewInit();
printf("OpenGL version supported by this platform (%s):\n", glGetString(GL_VERSION));
init();
// exit when window should close or exit is requested (ESC)
while (!glfwWindowShouldClose(window) && !exitRequested) {
draw();
glfwSwapBuffers(window);
glfwPollEvents();
}
glfwTerminate();
return 0;
}