computer-grafik-1/u05-1/matrixMath.c

242 lines
5.2 KiB
C

#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <GL/glew.h>
#include <string.h>
void vec3Zero(GLfloat* out) {
for (int i = 0; i < 3; i++) {
out[i] = 0;
}
}
void vec3Add(GLfloat* out, GLfloat* a, GLfloat* b) {
for (int i = 0; i < 3; i++) {
out[i] = a[i] + b[i];
}
}
void vec3Multiply(GLfloat* out, GLfloat* a, GLfloat x) {
for (int i = 0; i < 3; i++) {
out[i] = a[i] * x;
}
}
void vec3Subtract(GLfloat* out, GLfloat* a, GLfloat* b) {
vec3Multiply(out, b, -1);
vec3Add(out, a, out);
}
void vec3Cross(GLfloat* out, GLfloat* a, GLfloat* b) {
GLfloat result[3];
result[0] = a[1] * b[2] - a[2] * b[1];
result[1] = a[2] * b[0] - a[0] * b[2];
result[2] = a[0] * b[1] - a[1] * b[0];
memcpy(out, result, sizeof(result));
}
GLfloat vec3Length(GLfloat* a) {
return (GLfloat)sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
}
GLfloat vec3Dot(GLfloat* a, GLfloat* b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
void vec3Normalise(GLfloat* out, GLfloat* a) {
vec3Multiply(out, a, 1 / vec3Length(a));
}
// CREATE 4x4 IDENTITY MATRIX
void identity(GLfloat* out) {
for (int i = 0; i < 16; i++) {
out[i] = (i % 4 == i / 4);
}
}
// CREATE 4x4 TRANSLATION MATRIX
void translation(GLfloat* out, GLfloat* v) {
identity(out);
for (int i = 0; i < 3; i++) {
out[3 * 4 + i] = v[i];
}
}
// CREATE 4x4 SCALING MATRIX
void scaling(GLfloat* out, GLfloat* v) {
identity(out);
for (int i = 0; i < 3; i++) {
out[i * 5] = v[i];
}
}
// CREATE 4x4 ROTATION MATRIX AROUND Z AXIS
/* cos a -sin a 0 0
* sin a cos a 0 0
* 0 0 1 0
* 0 0 0 1
*/
void rotationZ(GLfloat* out, GLfloat angle) {
identity(out);
out[0] = cos(angle);
out[1] = sin(angle);
out[4] = -sin(angle);
out[5] = cos(angle);
}
// CREATE 4x4 ROTATION MATRIX AROUND Y AXIS
void rotationY(GLfloat* out, GLfloat angle) {
identity(out);
out[0] = cos(angle);
out[2] = -sin(angle);
out[8] = sin(angle);
out[10] = cos(angle);
}
// CREATE 4x4 ROTATION MATRIX AROUND Y AXIS
void rotationX(GLfloat* out, GLfloat angle) {
identity(out);
out[5] = cos(angle);
out[6] = sin(angle);
out[9] = -sin(angle);
out[10] = cos(angle);
}
// MULTIPLY ANY TO MATRICES
void multiplyAny(GLfloat* A, GLfloat* B, GLfloat* out, int wA, int hA, int wB) {
int sizeOut = hA * wB;
GLfloat* result = (GLfloat*) malloc(sizeOut * sizeof(GLfloat));
for (int i = 0; i < sizeOut; i++) {
result[i] = 0;
// printf("%d: ", i);
for (int j = 0; j < wA; j++) {
// printf("%d : %f ", j * hA + i % hA, A[j * hA + i % hA]);
result[i] += A[j * hA + i % hA] * B[j + i / hA * wB];
}
// printf("\n");
}
memcpy(out, result, sizeOut * sizeof(GLfloat));
free(result);
result = NULL;
}
// MULTIPLY TWO 4x4 MATRICES
void multiply(GLfloat* A, GLfloat* B, GLfloat* out) {
multiplyAny(A, B, out, 4, 4, 4);
}
// MULTIPLY in WITH TRANSLATION MATRIX OF v
void translate(GLfloat* out, GLfloat* in, GLfloat* v) {
GLfloat translationMatrix[16];
translation(translationMatrix, v);
multiply(translationMatrix, in, out);
}
// MULTIPLY in WITH SCALING MATRIX OF v
void scale(GLfloat* out, GLfloat* in, GLfloat* v) {
GLfloat scalingMatrix[16];
scaling(scalingMatrix, v);
multiply(scalingMatrix, in, out);
}
// MULTIPLY in WITH ROTATION MATRIX OF a AROUND Z AXIS
void rotateZ(GLfloat* out, GLfloat* in, GLfloat angle) {
GLfloat rotationMatrix[16];
rotationZ(rotationMatrix, angle);
multiply(rotationMatrix, in, out);
}
// MULTIPLY in WITH ROTATION MATRIX OF a AROUND Y AXIS
void rotateY(GLfloat* out, GLfloat* in, GLfloat angle) {
GLfloat rotationMatrix[16];
rotationY(rotationMatrix, angle);
multiply(rotationMatrix, in, out);
}
// MULTIPLY in WITH ROTATION MATRIX OF a AROUND X AXIS
void rotateX(GLfloat* out, GLfloat* in, GLfloat angle) {
GLfloat rotationMatrix[16];
rotationX(rotationMatrix, angle);
multiply(rotationMatrix, in, out);
}
void transposeAny(GLfloat* out, GLfloat* in, int w, int h) {
int size = w * h;
GLfloat* result = (GLfloat*) malloc(size * sizeof(GLfloat));
for (int i = 0; i < size; i++) {
result[i] = in[(i % w) * h + i / w];
}
memcpy(out, result, size * sizeof(GLfloat));
free(result);
result = NULL;
}
void transpose(GLfloat* out, GLfloat* in) {
transposeAny(out, in, 4, 4);
}
void printAny(GLfloat* M, int w, int h) {
GLfloat* transposed = (GLfloat*) malloc(w * h * sizeof(GLfloat));
transposeAny(transposed, M, w, h);
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
printf("%.4f ", transposed[i * w + j]);
}
printf("\n");
}
free(transposed);
transposed = NULL;
}
void vec3Print(GLfloat* a) {
printAny(a, 1, 3);
}
void mat4Print(GLfloat* m) {
printAny(m, 4, 4);
}
void lookAt(GLfloat* out, GLfloat* eye, GLfloat* center, GLfloat* up) {
GLfloat n[3];
vec3Subtract(n, eye, center);
GLfloat u[3];
vec3Cross(u, up, n);
GLfloat v[3];
vec3Cross(v, n, u);
vec3Normalise(n, n);
vec3Normalise(u, u);
vec3Normalise(v, v);
GLfloat Mr[16];
identity(Mr);
memcpy(&Mr[0], u, sizeof(GLfloat) * 3);
memcpy(&Mr[4], v, sizeof(GLfloat) * 3);
memcpy(&Mr[8], n, sizeof(GLfloat) * 3);
transpose(Mr, Mr);
GLfloat t[3];
vec3Multiply(u, u, -1);
vec3Multiply(v, v, -1);
vec3Multiply(n, n, -1);
t[0] = vec3Dot(u, eye);
t[1] = vec3Dot(v, eye);
t[2] = vec3Dot(n, eye);
memcpy(&Mr[12], t, sizeof(GLfloat) * 3);
memcpy(out, Mr, sizeof(GLfloat) * 16);
}