198 lines
4.5 KiB
C
198 lines
4.5 KiB
C
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <GL/glew.h>
|
|
#include <string.h>
|
|
|
|
// MATRICES IN COLUMN MAJOR
|
|
|
|
void vec3Zero(GLfloat* out) {
|
|
for (int i = 0; i < 3; i++) {
|
|
out[i] = 0;
|
|
}
|
|
}
|
|
|
|
void vec3Add(GLfloat* out, GLfloat* a, GLfloat* b) {
|
|
for (int i = 0; i < 3; i++) {
|
|
out[i] = a[i] + b[i];
|
|
}
|
|
}
|
|
|
|
void vec3Multiply(GLfloat* out, GLfloat* a, GLfloat x) {
|
|
for (int i = 0; i < 3; i++) {
|
|
out[i] = a[i] * x;
|
|
}
|
|
}
|
|
|
|
void vec3Subtract(GLfloat* out, GLfloat* a, GLfloat* b) {
|
|
GLfloat minusB[3];
|
|
vec3Multiply(minusB, b, -1);
|
|
vec3Add(out, a, minusB);
|
|
}
|
|
|
|
void vec3Cross(GLfloat* out, GLfloat* a, GLfloat* b) {
|
|
GLfloat result[3];
|
|
result[0] = a[1] * b[2] - a[2] * b[1];
|
|
result[1] = a[2] * b[0] - a[0] * b[2];
|
|
result[2] = a[0] * b[1] - a[1] * b[0];
|
|
memcpy(out, result, sizeof(GLfloat) * 3);
|
|
}
|
|
|
|
GLfloat vec3Length(GLfloat* a) {
|
|
return (GLfloat)sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
|
|
}
|
|
|
|
GLfloat vec3Dot(GLfloat* a, GLfloat* b) {
|
|
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
|
|
}
|
|
|
|
void vec3Normalise(GLfloat* out, GLfloat* a) {
|
|
vec3Multiply(out, a, 1 / vec3Length(a));
|
|
}
|
|
// CREATE 4x4 IDENTITY MATRIX
|
|
void identity(GLfloat* out) {
|
|
for (int i = 0; i < 16; i++) {
|
|
out[i] = (i % 4 == i / 4);
|
|
}
|
|
}
|
|
|
|
// CREATE 4x4 TRANSLATION MATRIX
|
|
void translation(GLfloat* out, GLfloat* v) {
|
|
identity(out);
|
|
for (int i = 0; i < 3; i++) {
|
|
out[3 * 4 + i] = v[i];
|
|
}
|
|
}
|
|
|
|
// CREATE 4x4 SCALING MATRIX
|
|
void scaling(GLfloat* out, GLfloat* v) {
|
|
identity(out);
|
|
for (int i = 0; i < 3; i++) {
|
|
out[i * 5] = v[i];
|
|
}
|
|
}
|
|
|
|
// CREATE 4x4 ROTATION MATRIX AROUND Z AXIS
|
|
/* cos a -sin a 0 0
|
|
* sin a cos a 0 0
|
|
* 0 0 1 0
|
|
* 0 0 0 1
|
|
*/
|
|
void rotationZ(GLfloat* out, GLfloat angle) {
|
|
identity(out);
|
|
out[0] = cos(angle);
|
|
out[1] = sin(angle);
|
|
out[4] = -sin(angle);
|
|
out[5] = cos(angle);
|
|
}
|
|
|
|
// CREATE 4x4 ROTATION MATRIX AROUND Y AXIS
|
|
void rotationY(GLfloat* out, GLfloat angle) {
|
|
identity(out);
|
|
out[0] = cos(angle);
|
|
out[2] = -sin(angle);
|
|
out[8] = sin(angle);
|
|
out[10] = cos(angle);
|
|
}
|
|
|
|
// CREATE 4x4 ROTATION MATRIX AROUND Y AXIS
|
|
void rotationX(GLfloat* out, GLfloat angle) {
|
|
identity(out);
|
|
out[5] = cos(angle);
|
|
out[6] = sin(angle);
|
|
out[9] = -sin(angle);
|
|
out[10] = cos(angle);
|
|
}
|
|
|
|
// MULTIPLY ANY TO MATRICES
|
|
void multiplyAny(GLfloat* out, GLfloat* A, GLfloat* B, int wA, int hA, int wB) {
|
|
int sizeOut = hA * wB;
|
|
GLfloat* result = (GLfloat*) malloc(sizeOut * sizeof(GLfloat));
|
|
for (int i = 0; i < sizeOut; i++) {
|
|
result[i] = 0;
|
|
for (int j = 0; j < wA; j++) {
|
|
result[i] += A[j * hA + i % hA] * B[j + i / hA * wB];
|
|
}
|
|
}
|
|
memcpy(out, result, sizeOut * sizeof(GLfloat));
|
|
free(result);
|
|
result = NULL;
|
|
}
|
|
|
|
// MULTIPLY TWO 4x4 MATRICES
|
|
void multiply(GLfloat* out, GLfloat* A, GLfloat* B) {
|
|
multiplyAny(out, A, B, 4, 4, 4);
|
|
}
|
|
|
|
// MULTIPLY in WITH TRANSLATION MATRIX OF v
|
|
void translate(GLfloat* out, GLfloat* in, GLfloat* v) {
|
|
GLfloat translationMatrix[16];
|
|
translation(translationMatrix, v);
|
|
multiply(out, translationMatrix, in);
|
|
}
|
|
|
|
// MULTIPLY in WITH SCALING MATRIX OF v
|
|
void scale(GLfloat* out, GLfloat* in, GLfloat* v) {
|
|
GLfloat scalingMatrix[16];
|
|
scaling(scalingMatrix, v);
|
|
multiply(out, scalingMatrix, in);
|
|
}
|
|
|
|
// MULTIPLY in WITH ROTATION MATRIX OF a AROUND Z AXIS
|
|
void rotateZ(GLfloat* out, GLfloat* in, GLfloat angle) {
|
|
GLfloat rotationMatrix[16];
|
|
rotationZ(rotationMatrix, angle);
|
|
multiply(out, rotationMatrix, in);
|
|
}
|
|
// MULTIPLY in WITH ROTATION MATRIX OF a AROUND Y AXIS
|
|
void rotateY(GLfloat* out, GLfloat* in, GLfloat angle) {
|
|
GLfloat rotationMatrix[16];
|
|
rotationY(rotationMatrix, angle);
|
|
multiply(out, rotationMatrix, in);
|
|
}
|
|
// MULTIPLY in WITH ROTATION MATRIX OF a AROUND X AXIS
|
|
void rotateX(GLfloat* out, GLfloat* in, GLfloat angle) {
|
|
GLfloat rotationMatrix[16];
|
|
rotationX(rotationMatrix, angle);
|
|
multiply(out, rotationMatrix, in);
|
|
}
|
|
|
|
void transposeAny(GLfloat* out, GLfloat* in, int w, int h) {
|
|
int size = w * h;
|
|
GLfloat* result = (GLfloat*) malloc(size * sizeof(GLfloat));
|
|
|
|
for (int i = 0; i < size; i++) {
|
|
result[i] = in[(i % w) * h + i / w];
|
|
}
|
|
|
|
memcpy(out, result, size * sizeof(GLfloat));
|
|
free(result);
|
|
result = NULL;
|
|
}
|
|
|
|
|
|
void transpose(GLfloat* out, GLfloat* in) {
|
|
transposeAny(out, in, 4, 4);
|
|
}
|
|
|
|
void printAny(GLfloat* M, int w, int h) {
|
|
GLfloat* transposed = (GLfloat*) malloc(w * h * sizeof(GLfloat));
|
|
transposeAny(transposed, M, w, h);
|
|
|
|
for (int i = 0; i < h; i++) {
|
|
for (int j = 0; j < w; j++) {
|
|
printf("%.4f ", transposed[i * w + j]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
free(transposed);
|
|
transposed = NULL;
|
|
}
|
|
|
|
void vec3Print(GLfloat* a) {
|
|
printAny(a, 1, 3);
|
|
}
|
|
|
|
void mat4Print(GLfloat* m) {
|
|
printAny(m, 4, 4);
|
|
} |