Compare commits

..

No commits in common. "main" and "u01" have entirely different histories.
main ... u01

17 changed files with 61 additions and 2053376 deletions

View File

@ -1,33 +0,0 @@
# Detect OS
OS := $(shell uname)
GLEW_LIBS := $(shell pkgconf --libs glew)
GLFW_LIBS := $(shell pkgconf --libs glfw3)
# Set libraries for Linux
ifeq ($(OS), Linux)
OPENGL_LIB := -lGL
# Set libraries for Windows (MSYS2)
else
OPENGL_LIB := -lopengl32
endif
# Source files
SRC := src/main.c src/log.c src/shader.c
# Output binary
OUT := cg1
# Compiler
CC := gcc
# Build target
$(OUT): $(SRC)
$(CC) -o $(OUT) $(SRC) $(GLEW_LIBS) $(GLFW_LIBS) $(OPENGL_LIB)
# Clean target
clean:
rm -f $(OUT)
# mark phony targets
.PHONY: clean

217
README.md
View File

@ -1,75 +1,14 @@
Dieses Readme soll helfen, die Umgebung für die Computergrafik Übungen einzurichten. # Dependencies Installieren
**Merke:** Ich nutze [Meson](https://mesonbuild.com/) statt Make, somit wird `pkgconf` nicht benötigt, und Cross-Platform Entwicklung wird etwas erleichtert. Diese Anleitung ist jedoch auch für Makefile Nutzer geeignet.
Unter Linux ist das Bearbeiten der Aufgaben am einfachsten. Dieses Readme beschreibt aber auch Möglichkeiten, die Aufgaben unter Windows zu bearbeiten, sowie eine Anleitung für [macOS](#macos).
Für Windows gibt es zwei Möglichkeiten:
- [WSL (Windows Subsystem for Linux)](#wsl)
- Nutzt die Linux Umgebung unter Windows
- [Nativ Windows mit MSYS2 bzw MINGW64](#windows-native)
- Nutzt Windows spezifische Tools
Der Entwicklungsprozess ist mit beiden Methoden relativ gleich. Nur im Aufsetzen der Umgebung gibt es Unterschiede.
Die Performance wird mit dem nativen Windows Ansatz besser sein, jedoch sind auch schwächere Geräte meist problemlos in der Lage, die Aufgaben unter WSL zu bearbeiten.
# Ubuntu / WSL
Package Datenbank synchronisieren
```bash ```bash
sudo apt update sudo apt-get update
``` sudo apt-get install libglfw3 libglfw3-dev
sudo apt-get install libglew-dev
Grundlegende Tools wie gcc und make installieren
```
sudo apt install build-essential
```
Meson und Ninja (wird für Meson benötigt) installieren
```
sudo apt install meson ninja-build
```
pkgconf installieren (wird für Make benötigt)
```
sudo apt install pkgconf
```
GLFW installieren
```
sudo apt install libglfw3 libglfw3-dev
```
GLEW installieren
```
sudo apt install libglew-dev
``` ```
# WSL # WSL
**Für grafische Anwendungen wird WSL 2 benötigt.** ## WSL Updaten
Ist WSL 2 bereits installiert, können benötigte Pakete installiert werden wie oben beschrieben.
## WSL Installieren
[Installieren von Linux unter Windows mit WSL - Microsoft Learn](https://learn.microsoft.com/de-de/windows/wsl/install)
## WSL zu WSL 2 upgraden
### Virtualisierung Aktivieren
Virtualisierung kann über die Powershell oder im BIOS aktiviert werden und ist notwendig für WSL 2
```
dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart
dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart
```
Anschließend Windows neustarten
### WSL Updaten
``` ```
# aktuelle Version anzeigen # aktuelle Version anzeigen
@ -82,150 +21,10 @@ wsl --set-version <distro-name> 2
wsl --update wsl --update
``` ```
## Hilfreiche Links ## Virtualisierung Aktivieren
(Danke an Rebecca Trautner)
- [Using c++ and WSL in VS Code](https://code.visualstudio.com/docs/cpp/config-wsl)
- [Diagnosing "cannot open display" type issues in WSLg](https://github.com/microsoft/wslg/wiki/Diagnosing-%22cannot-open-display%22-type-issues-with-WSLg)
# Windows Native
## MSYS2 Installation
MSYS2 dient als Entwicklungsumgebung und stellt Tools wie Make und gcc zur Verfügung
[Download und Installationsanleitung](https://www.msys2.org/)
Alle folgenden Schritte sollten im MSYS2 MINGW64 Terminal ausgeführt werden.
## Libraries installieren
Package Datenbank synchronisieren
```
pacman -Syu
```
Libraries installieren
```
pacman -S mingw-w64-x86_64-glfw mingw-w64-x86_64-glew
```
## Meson installieren (Empfehlung)
```
pacman -S mingw-w64-x86_64-meson
```
## gcc installieren
```
pacman -S mingw-w64-x86_64-gcc
```
## git installieren (Empfehlung)
```
pacman -S git
```
## mingw64 Pfad zur "Path" Umgebungsvariable hinzufügen
Dieser Schritt ist nur notwendig, wenn das Programm auch ohne MSYS2 gestartet werden soll (also Doppelclick auf die `.exe` Datei)
``` ```
C:\msys64\mingw64\bin dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart
dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart
``` ```
- Windows Suche -> "Umgebungsvariablen" eintippen
- -> "Umgebungsvariablen..."
- -> "Path" -> "Bearbeiten" -> "Neu" -> Pfad einfügen
- Neue Umgebungsvariablen werden erst nach Programm Neustart übernommen
Der Code dieses Projekts ist außerdem darauf ausgelegt, dass die Datei aus dem Wurzelverzeichnis des Repositories ausgeführt wird. Die Shader Pfade z.B. sind relativ zum Wurzelverzeichnis. Die Datei muss also aus dem `/build` Verzeichnis in das Wurzelverzeichnis des Repositories verschoben werden. Alternativ, um die `.exe` Datei von einem anderen Verzeichnis auszuführen, kann man Mit Rechtsclick -> "Verknüpfung erstellen" eine Verknüpfung erstellen und anschließend in den Eigenschaften das Start-Verzeichnis ändern:
`C:/Pfad/Zum/Projekt/build` -> `C:/Pfad/Zum/Projekt`
# Kompilieren und Ausführen
Nach den oben beschriebenen Schritten sollte das Projekt kompiliert und ausgeführt werden können.
## Meson
```bash
meson setup build # muss nur beim ersten Mal ausgeführt werden
meson compile -C build # kompiliert das Projekt
# Ausführen
./build/cg1 # linux
./build/cg1.exe # windows
```
## Make
```bash
make # kompiliert das Projekt
# Ausführen
./cg1 # linux
./cg1.exe # windows
```
# MacOS
**Merke:** Da ich selber kein MacOS habe kann ich diese Schritte leider nicht replizieren. Diese Anleitung wurde geschrieben von Paul-Christoph Otte (Danke!), welcher 2024 dieses Modul belegt hat. Entsprechend wird hier *nicht* Meson genutzt.
---
Eine kleine Anleitung für CG1 mit VSCode und einem MacBook M1:
1. Homebrew installieren
2. Mit Homebrew glew, glfw, pkgconf installieren (brew install glew / brew install glfw / brew install pkgconf)
3. unter /usr/local/ einen neuen Ordner "include" erstellen
4. Dort Ordner reinkopieren (habe welche geschickt bekommen, dürfte aber auch gehen, wenn ihr die Ordner von homebrew reinkopiert. Die liegen unter /opt/homebrew/Cellar/)
5. In VSCode den IntelliSenseMode auf gcc ändern (standardmäßig war bei mir clang, bei M1: macos-gcc-arm64)
6. Include-path in vscode hinzufügen: /usr/local/include (In c_cpp_properties.json date)
7. in main.c includes anpassen:
```c
#include <GL/glew.h>
#include <OpenGL/gl.h>
#include <OpenGL/glext.h>
#include <GLFW/glfw3.h>
#include <stdio.h>
```
8. im Makefile:
```makefile
GLEW_LIBS=$(shell pkgconf glew --libs)
GLFW_LIBS=$(shell pkgconf glfw3 --libs)
cg1: main.c
gcc -o cg1 -std=c17 main.c -w $(GLEW_LIBS) $(GLFW_LIBS) -framework OpenGL
```
---
**Weitere Info von Dennis zu macOS:**
unter macOS gibt es noch ein interessantes Problem: Die OpenGL-Version unterstützt offenbar nicht die Ausgabevariable `gl_FragColor` im Fragment-Shader.
Stattdessen müsst ihr selbst eine Ausgabevariable deklarieren:
```glsl
layout (location = 0) out fragColor;
```
Diese kann dann statt `gl_FragColor` verwendet werden.
---
Bei weiteren Fragen, meldet euch gerne bei Dennis oder bei mir per E-Mail oder sprecht uns in einer der Übungen an.
<dennis.allerkamp@hs-hannover.de> | <luca.conte@stud.hs-hannover.de>
Oder noch besser: Stellt die Fragen im Selbsthilfeforum, für den Fall, dass andere das gleiche Problem haben. Dann haben alle was davon. :)

View File

@ -1,14 +1,9 @@
project('cg1', 'c') project('cg1', 'c')
cc = meson.get_compiler('c')
m_dep = cc.find_library('m', required : false)
src_files = [ src_files = [
'./src/main.c', './src/main.c',
'./src/shader.c', './src/shader.c',
'./src/log.c', './src/log.c'
'./src/matrix-math.c',
'./src/wavefrontobj.c'
] ]
executable('cg1', executable('cg1',
@ -16,7 +11,6 @@ executable('cg1',
dependencies: [ dependencies: [
dependency('GL'), dependency('GL'),
dependency('glew'), dependency('glew'),
dependency('glfw3'), dependency('glfw3')
m_dep
] ]
) )

View File

@ -1,34 +0,0 @@
# Blender 4.4.3
# www.blender.org
o Cube
v 1.000000 1.000000 -1.000000
v 1.000000 -1.000000 -1.000000
v 1.000000 1.000000 1.000000
v 1.000000 -1.000000 1.000000
v -1.000000 1.000000 -1.000000
v -1.000000 -1.000000 -1.000000
v -1.000000 1.000000 1.000000
v -1.000000 -1.000000 1.000000
vn -0.0000 1.0000 -0.0000
vn -0.0000 -0.0000 1.0000
vn -1.0000 -0.0000 -0.0000
vn -0.0000 -1.0000 -0.0000
vn 1.0000 -0.0000 -0.0000
vn -0.0000 -0.0000 -1.0000
vt 1.000000 0.000000
vt 0.000000 1.000000
vt 0.000000 0.000000
vt 1.000000 1.000000
s 0
f 5/1/1 3/2/1 1/3/1
f 3/1/2 8/2/2 4/3/2
f 7/1/3 6/2/3 8/3/3
f 2/1/4 8/2/4 6/3/4
f 1/1/5 4/2/5 2/3/5
f 5/1/6 2/2/6 6/3/6
f 5/1/1 7/4/1 3/2/1
f 3/1/2 7/4/2 8/2/2
f 7/1/3 5/4/3 6/2/3
f 2/1/4 4/4/4 8/2/4
f 1/1/5 3/4/5 4/2/5
f 5/1/6 1/4/6 2/2/6

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -22,10 +22,10 @@ extern unsigned int logLevel;
#define DEBUG_COL "\x1B[90m" #define DEBUG_COL "\x1B[90m"
#define NORMAL_COL "\x1B[0m" #define NORMAL_COL "\x1B[0m"
#define FATAL(...) if (logLevel >= LOG_LEVEL_FATAL) { fprintf(stderr, "| %sFATAL%s | ", FATAL_COL, NORMAL_COL); fprintf(stderr, __VA_ARGS__); fprintf(stderr, "\n"); } #define FATAL(...) if (logLevel >= LOG_LEVEL_FATAL) { printf("| %sFATAL%s | ", FATAL_COL, NORMAL_COL); printf(__VA_ARGS__); printf("\n"); }
#define ERROR(...) if (logLevel >= LOG_LEVEL_ERROR) { fprintf(stderr, "| %sERROR%s | ", ERROR_COL, NORMAL_COL); fprintf(stderr, __VA_ARGS__); fprintf(stderr, "\n"); } #define ERROR(...) if (logLevel >= LOG_LEVEL_ERROR) { printf("| %sERROR%s | ", ERROR_COL, NORMAL_COL); printf(__VA_ARGS__); printf("\n"); }
#define WARN(...) if (logLevel >= LOG_LEVEL_WARN) { fprintf(stderr, "| %sWARN%s | ", WARN_COL, NORMAL_COL); fprintf(stderr, __VA_ARGS__); fprintf(stderr, "\n"); } #define WARN(...) if (logLevel >= LOG_LEVEL_WARN) { printf("| %sWARN%s | ", WARN_COL, NORMAL_COL); printf(__VA_ARGS__); printf("\n"); }
#define INFO(...) if (logLevel >= LOG_LEVEL_INFO) { fprintf(stderr, "| %sINFO%s | ", INFO_COL, NORMAL_COL); fprintf(stderr, __VA_ARGS__); fprintf(stderr, "\n"); } #define INFO(...) if (logLevel >= LOG_LEVEL_INFO) { printf("| %sINFO%s | ", INFO_COL, NORMAL_COL); printf(__VA_ARGS__); printf("\n"); }
#define DEBUG(...) if (logLevel >= LOG_LEVEL_DEBUG) { fprintf(stderr, "| %sDEBUG%s | ", DEBUG_COL, NORMAL_COL); fprintf(stderr, __VA_ARGS__); fprintf(stderr, "\n"); } #define DEBUG(...) if (logLevel >= LOG_LEVEL_DEBUG) { printf("| %sDEBUG%s | ", DEBUG_COL, NORMAL_COL); printf(__VA_ARGS__); printf("\n"); }
#endif // LOG_H #endif // LOG_H

View File

@ -1,96 +1,42 @@
#include <GL/glew.h> #include <GL/glew.h>
#include <GL/gl.h>
#include <GLFW/glfw3.h> #include <GLFW/glfw3.h>
#include <math.h>
#include <stdio.h> #include <stdio.h>
#include <string.h> #include <string.h>
#include <time.h>
#include <unistd.h>
#include "shader.h" #include "shader.h"
#include "log.h" #include "log.h"
#include "shader.h" #include "src/shader.h"
#include "matrix-math.h"
#include "wavefrontobj.h"
#define STATUS_INTERVAL 0.5
#define PI 3.14159f
GLuint program; GLuint program;
GLuint vertexArrayObject; GLuint vertexArrayObject;
GLuint numVertices;
GLuint initialWindowWidth = 800; GLuint initialWindowWidth = 800;
GLuint initialWindowHeight = 600; GLuint initialWindowHeight = 600;
GLfloat aspect;
mat4 projectionMatrix;
int frameCount = 0;
struct timespec last_time, current_time;
typedef struct ColorRGB {
GLfloat r;
GLfloat g;
GLfloat b;
} ColorRGB;
// Color Conversion Functions from https://gist.github.com/ciembor/1494530
GLfloat hueToRgb(GLfloat p, GLfloat q, GLfloat t) {
if (t < 0) t += 1;
if (t > 1) t -= 1;
if (t < 1./6) return p + (q - p) * 6 * t;
if (t < 1./2) return q;
if (t < 2./3) return p + (q - p) * (2./3 - t) * 6;
return p;
}
// Color Conversion Functions from https://gist.github.com/ciembor/1494530
ColorRGB hslToRgb(GLfloat h, GLfloat s, GLfloat l) {
ColorRGB result = {0, 0, 0};
if(0 == s) {
result.r = result.g = result.b = l; // achromatic
} else {
float q = l < 0.5 ? l * (1 + s) : l + s - l * s;
float p = 2 * l - q;
result.r = hueToRgb(p, q, h + 1./3);
result.g = hueToRgb(p, q, h);
result.b = hueToRgb(p, q, h - 1./3);
}
return result;
}
void initialiseStatusDisplay() {
clock_gettime(CLOCK_MONOTONIC, &last_time);
}
void updateStatusDisplay() {
frameCount++;
clock_gettime(CLOCK_MONOTONIC, &current_time);
double elapsed = (current_time.tv_sec - last_time.tv_sec) +
(current_time.tv_nsec - last_time.tv_nsec) / 1e9;
if (elapsed >= STATUS_INTERVAL) {
double fps = frameCount / elapsed;
frameCount = 0;
last_time = current_time;
printf("\rFPS: %.2f ", fps);
fflush(stdout);
}
}
void recalculateProjectionMatrix() {
mat4BuildPerspective(projectionMatrix, 60 * M_PI / 180, aspect, 0.1, 10);
DEBUG("Recalculating Projection Matrix");
}
void init(void) { void init(void) {
INFO("Compiling Shaders...");
INFO("Building Programs..."); // create and compile vertex shader
ProgramLinkResult linkResult = buildShaderProgram("src/shaders/vertex.glsl", "src/shaders/fragment.glsl"); INFO("Compiling Vertex Shader...");
ShaderCompileResult vertexShader = readAndCompileShaderFromFile("src/shaders/vertex.glsl", GL_VERTEX_SHADER);
if (!vertexShader.success) {
FATAL("Failed to compile Vertex Shader");
exit(1);
}
// create and compile fragment shader
INFO("Compiling Fragment Shader...");
ShaderCompileResult fragmentShader = readAndCompileShaderFromFile("src/shaders/fragment.glsl", GL_FRAGMENT_SHADER);
if (!fragmentShader.success) {
FATAL("Failed to compile Vertex Shader");
exit(1);
}
// create and link shader program
INFO("Linking Shader Program...");
ProgramLinkResult linkResult = linkShaderProgram(vertexShader.shader, fragmentShader.shader);
if (!linkResult.success) { if (!linkResult.success) {
FATAL("Failed to link Program"); FATAL("Failed to link Program");
exit(1); exit(1);
@ -101,39 +47,20 @@ void init(void) {
INFO("Shader Program Done."); INFO("Shader Program Done.");
// create triangle buffer // create triangle buffer
/** GLfloat triangleVertices[] =
* -0.35 0.35 {
* | -0.2 0.2 | //X //Y // R //G /B
* | | | | 0.0f, 0.5f, 0.0f, 1.0f, 1.0f,
* -0.5f, -0.5f, 1.0f, 0.0f, 1.0f,
* 0----1 4----5 --- 0.6 0.5f, -0.5f, 1.0f, 1.0f, 0.0f
* | | | | };
* | | | |
* | 2--------3 | --- 0.1
* | |
* | 9--------8 | --- -0.1
* | | | |
* | | | |
* 11---10 7----6 --- -0.6
*
* 12-----------------13 --- -0.7
* | |
* 15-----------------14 --- -0.9
*
*/
DEBUG("Loading OBJ File");
ParsedObjFile f = readObjFile("obj/smooth_monkey.obj");
numVertices = f.length * sizeof(face) / sizeof(vertex);
DEBUG("Creating vertext buffer");
GLuint vertexBuffer; GLuint vertexBuffer;
glGenBuffers(1, &vertexBuffer); glGenBuffers(1, &vertexBuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer); glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
glBufferData(GL_ARRAY_BUFFER, f.length * sizeof(face), f.faces, GL_STATIC_DRAW); glBufferData(GL_ARRAY_BUFFER, sizeof(triangleVertices), triangleVertices, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ARRAY_BUFFER, 0);
DEBUG("Creating vertex array object");
// create vertex array object // create vertex array object
glGenVertexArrays(1, &vertexArrayObject); glGenVertexArrays(1, &vertexArrayObject);
glBindVertexArray(vertexArrayObject); glBindVertexArray(vertexArrayObject);
@ -142,91 +69,35 @@ void init(void) {
// vertex position data // vertex position data
glVertexAttribPointer( glVertexAttribPointer(
0, // shader location 0, // shader location
3, // number of values to read 2, // number of values to read
GL_FLOAT, // type of value GL_FLOAT, // type of value
GL_FALSE, // if values are normalised GL_FALSE, // if values are normalised
sizeof(vertex), // stride - distance between vertices 5 * sizeof(GLfloat), // stride - distance between vertices
0 // start offset 0 // start offset
); );
glEnableVertexAttribArray(0); glEnableVertexAttribArray(0);
glVertexAttribPointer( // vertex color data
1, glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)(2 * sizeof(GLfloat)));
3,
GL_FLOAT,
GL_FALSE,
sizeof(vertex),
(void*)offsetof(vertex, normal)
);
glEnableVertexAttribArray(1); glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0); glBindVertexArray(0);
glClearColor(0.0f, 0.0f, 0.0f, 0.3f); glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glViewport(0, 0, initialWindowWidth, initialWindowHeight); glViewport(0, 0, initialWindowWidth, initialWindowHeight);
glEnable(GL_CULL_FACE);
glFrontFace(GL_CCW);
glEnable(GL_DEPTH_TEST);
initialiseStatusDisplay();
recalculateProjectionMatrix();
INFO("--- Initialisation done ---");
} }
GLfloat currentHue = 0.0f;
void draw(void) { void draw(void) {
updateStatusDisplay(); glClear(GL_COLOR_BUFFER_BIT);
// counter for animation
currentHue += 0.005f;
if (currentHue > 1.0) currentHue = 0.0f;
// clear colour and depth buffer
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// select program
glUseProgram(program); glUseProgram(program);
// build view matrix
mat4 viewMatrix;
// mat4Identity(viewMatrix);
vec3 cameraPos = {cos(currentHue * M_PI * 2), 0.0f, sin(currentHue * M_PI * 2)};
vec3 cameraLookAt = {0.0f, 0.2f, 0.0f};
vec3 cameraUp = {0.0f, 1.0f, 0.0f};
mat4BuildLookAt(viewMatrix, cameraPos, cameraLookAt, cameraUp);
GLuint projectionLocation = glGetUniformLocation(program, "uProjection");
glUniformMatrix4fv(projectionLocation, 1, GL_FALSE, projectionMatrix);
// build model Matrix
mat4 modelMatrix;
mat4 modelViewMatrix;
vec3 scale = {0.2f, 0.2f, 0.2f};
mat4Identity(modelMatrix);
mat4Scale(modelMatrix, modelMatrix, scale);
mat4Multiply(modelViewMatrix, viewMatrix, modelMatrix);
glUniformMatrix4fv(glGetUniformLocation(program, "uModelView"), 1, GL_FALSE, modelViewMatrix);
glBindVertexArray(vertexArrayObject); glBindVertexArray(vertexArrayObject);
glDrawArrays(GL_TRIANGLES, 0, numVertices); glDrawArrays(GL_TRIANGLES, 0, 3);
} }
void framebuffer_size_callback(GLFWwindow* window, int width, int height) { void framebuffer_size_callback(GLFWwindow* window, int width, int height) {
glViewport(0, 0, width, height); glViewport(0, 0, width, height);
aspect = (float)width / height;
recalculateProjectionMatrix();
} }
int main(int argc, char const *argv[]) int main(int argc, char const *argv[])
@ -248,11 +119,7 @@ int main(int argc, char const *argv[])
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_TRANSPARENT_FRAMEBUFFER , GLFW_TRUE); GLFWwindow *window = glfwCreateWindow(initialWindowWidth, initialWindowHeight, "CG1", NULL, NULL);
GLFWwindow* window = glfwCreateWindow(initialWindowWidth, initialWindowHeight, "CG1", NULL, NULL);
aspect = (float)initialWindowWidth / initialWindowHeight;
if (!window) { if (!window) {
FATAL("Failed to open window"); FATAL("Failed to open window");
glfwTerminate(); glfwTerminate();

View File

@ -1,518 +0,0 @@
#include "matrix-math.h"
#include <math.h>
#include <stdio.h>
#include <string.h>
/**
* overwrites a 4x4 matrix with the identity matrix
*/
void mat4Identity(mat4 mat) {
for (int i = 0; i < 16; i++) {
mat[i] = (i % 4 == i / 4) ? 1 : 0;
}
}
/**
* copies a mat4 from src to dst
*/
void mat4Copy(mat4 src, mat4 dst) {
for (int i = 0; i < 16; i++) {
dst[i] = src[i];
}
}
/**
* sets all the values in a mat4 to zero
*/
void mat4Empty(mat4 mat) {
for (int i = 0; i < 16; i++) {
mat[i] = 0;
}
}
/**
* mutliplies A with B and stores the result in result
*/
void mat4Multiply(mat4 result, mat4 A, mat4 B) {
// if result is one of the arguments, modify copy instead of result directly
if (result == A || result == B) {
mat4 tempResult;
mat4Multiply(tempResult, A, B);
mat4Copy(tempResult, result);
return;
}
// loops over cells of the result matrix
for (int i = 0; i < 16; i++) {
int col = i / 4;
int row = i % 4;
// pointer to the current cell
GLfloat* curr = &(result[i]);
// initialise current cell with 0
*curr = 0;
// loop over the row of A and column of B
// continuously adding the multiplication of the two values to the result cell
for (int j = 0; j < 4; j++) {
*curr += A[row + j * 4] * B[j + col * 4];
}
}
}
/**
* prints a mat4 to the screen
*/
void mat4Print(mat4 m) {
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
printf("%.2f ", m[j * 4 + i]);
}
printf("\n");
}
}
/**
* translates by the vector v
*/
void mat4Translate(mat4 out, mat4 in, vec3 v) {
mat4 T;
mat4Identity(T);
T[12] = v[0];
T[13] = v[1];
T[14] = v[2];
mat4Multiply(out, T, in);
}
/**
* scales by the vector v
*/
void mat4Scale(mat4 out, mat4 in, vec3 v) {
mat4 T;
mat4Identity(T);
T[0] = v[0];
T[5] = v[1];
T[10] = v[2];
mat4Multiply(out, T, in);
}
/**
* rotates around the X axis by the angle a (in radians)
*/
void mat4RotateX(mat4 out, mat4 in, GLfloat a) {
mat4 T;
mat4Identity(T);
T[5] = cos(a);
T[6] = sin(a);
T[9] = -sin(a);
T[10] = cos(a);
mat4Multiply(out, T, in);
}
/**
* rotates around the Y axis by the angle a (in radians)
*/
void mat4RotateY(mat4 out, mat4 in, GLfloat a) {
mat4 T;
mat4Identity(T);
T[0] = cos(a);
T[2] = -sin(a);
T[8] = sin(a);
T[10] = cos(a);
mat4Multiply(out, T, in);
}
/**
* rotates around the Z axis by the angle a (in radians)
*/
void mat4RotateZ(mat4 out, mat4 in, GLfloat a) {
mat4 T;
mat4Identity(T);
T[0] = cos(a);
T[1] = sin(a);
T[4] = -sin(a);
T[5] = cos(a);
mat4Multiply(out, T, in);
}
/**
* builds a look-at matrix, overwriting out
* eye is the position of the camera
* look is the position of the target to be looked at
* up is the up vector
*/
void mat4BuildLookAt(mat4 out, vec3 eye, vec3 look, vec3 up) {
vec3 n;
vec3 u;
vec3 v;
vec3 t;
vec3Subtract(n, eye, look);
vec3CrossProduct(u, up, n);
vec3CrossProduct(v, n, u);
vec3Normalise(n, n);
vec3Normalise(u, u);
vec3Normalise(v, v);
t[0] = - vec3DotProduct(u, eye);
t[1] = - vec3DotProduct(v, eye);
t[2] = - vec3DotProduct(n, eye);
out[0] = u[0]; out[4] = u[1]; out[8] = u[2]; out[12] = t[0];
out[1] = v[0]; out[5] = v[1]; out[9] = v[2]; out[13] = t[1];
out[2] = n[0]; out[6] = n[1]; out[10] = n[2]; out[14] = t[2];
out[3] = 0; out[7] = 0; out[11] = 0; out[15] = 1;
}
/**
* builds a projection matrix, overwriting out
* r, l, t, b are the right, left, top and bottom of the frustum
* n and f are the distance of the near and far planes from the camera
*/
void mat4BuildProjection(mat4 out, GLfloat r, GLfloat l, GLfloat t, GLfloat b, GLfloat n, GLfloat f) {
mat4Identity(out);
out[0] = 2.0f / (r - l);
out[5] = 2.0f / (t - b);
out[8] = 1.0f / n * (r + l) / (r - l);
out[9] = 1.0f / n * (t + b) / (t - b);
out[10] = -1.0f / n * (f + n) / (f - n);
out[11] = -1.0f / n;
out[14] = - 2.0f * f / (f - n);
out[15] = 0.0f;
}
/**
* builds a perspective projection matrix, overwriting out
* fovy is the field of view in the y direction
* aspect is the aspect ratio
* n and f are the distance of the near and far planes from the camera
*/
void mat4BuildPerspective(mat4 out, GLfloat fovy, GLfloat aspect, GLfloat n, GLfloat f) {
GLfloat t = n * tan(0.5f * fovy);
GLfloat b = -t;
GLfloat r = aspect * t;
GLfloat l = -r;
mat4BuildProjection(out, r, l, t, b, n, f);
}
/**
* linearly interpolates between a and b, storing the result in out
*/
void mat4Interpolate(mat4 out, mat4 a, mat4 b, GLfloat f) {
for (int i = 0; i < 16; i++) {
out[i] = (1 - f) * a[i] + f * b[i];
}
}
void mat4From3(mat4 out, mat3 in) {
mat4Identity(out);
memcpy(&out[0], &in[0], sizeof(GLfloat) * 3);
memcpy(&out[4], &in[3], sizeof(GLfloat) * 3);
memcpy(&out[8], &in[6], sizeof(GLfloat) * 3);
}
/**
* https://stackoverflow.com/questions/1148309/inverting-a-4x4-matrix
*/
void mat4Inverse(mat4 out, mat4 m) {
GLfloat inv[16], det;
int i;
inv[0] = m[5] * m[10] * m[15] -
m[5] * m[11] * m[14] -
m[9] * m[6] * m[15] +
m[9] * m[7] * m[14] +
m[13] * m[6] * m[11] -
m[13] * m[7] * m[10];
inv[4] = -m[4] * m[10] * m[15] +
m[4] * m[11] * m[14] +
m[8] * m[6] * m[15] -
m[8] * m[7] * m[14] -
m[12] * m[6] * m[11] +
m[12] * m[7] * m[10];
inv[8] = m[4] * m[9] * m[15] -
m[4] * m[11] * m[13] -
m[8] * m[5] * m[15] +
m[8] * m[7] * m[13] +
m[12] * m[5] * m[11] -
m[12] * m[7] * m[9];
inv[12] = -m[4] * m[9] * m[14] +
m[4] * m[10] * m[13] +
m[8] * m[5] * m[14] -
m[8] * m[6] * m[13] -
m[12] * m[5] * m[10] +
m[12] * m[6] * m[9];
inv[1] = -m[1] * m[10] * m[15] +
m[1] * m[11] * m[14] +
m[9] * m[2] * m[15] -
m[9] * m[3] * m[14] -
m[13] * m[2] * m[11] +
m[13] * m[3] * m[10];
inv[5] = m[0] * m[10] * m[15] -
m[0] * m[11] * m[14] -
m[8] * m[2] * m[15] +
m[8] * m[3] * m[14] +
m[12] * m[2] * m[11] -
m[12] * m[3] * m[10];
inv[9] = -m[0] * m[9] * m[15] +
m[0] * m[11] * m[13] +
m[8] * m[1] * m[15] -
m[8] * m[3] * m[13] -
m[12] * m[1] * m[11] +
m[12] * m[3] * m[9];
inv[13] = m[0] * m[9] * m[14] -
m[0] * m[10] * m[13] -
m[8] * m[1] * m[14] +
m[8] * m[2] * m[13] +
m[12] * m[1] * m[10] -
m[12] * m[2] * m[9];
inv[2] = m[1] * m[6] * m[15] -
m[1] * m[7] * m[14] -
m[5] * m[2] * m[15] +
m[5] * m[3] * m[14] +
m[13] * m[2] * m[7] -
m[13] * m[3] * m[6];
inv[6] = -m[0] * m[6] * m[15] +
m[0] * m[7] * m[14] +
m[4] * m[2] * m[15] -
m[4] * m[3] * m[14] -
m[12] * m[2] * m[7] +
m[12] * m[3] * m[6];
inv[10] = m[0] * m[5] * m[15] -
m[0] * m[7] * m[13] -
m[4] * m[1] * m[15] +
m[4] * m[3] * m[13] +
m[12] * m[1] * m[7] -
m[12] * m[3] * m[5];
inv[14] = -m[0] * m[5] * m[14] +
m[0] * m[6] * m[13] +
m[4] * m[1] * m[14] -
m[4] * m[2] * m[13] -
m[12] * m[1] * m[6] +
m[12] * m[2] * m[5];
inv[3] = -m[1] * m[6] * m[11] +
m[1] * m[7] * m[10] +
m[5] * m[2] * m[11] -
m[5] * m[3] * m[10] -
m[9] * m[2] * m[7] +
m[9] * m[3] * m[6];
inv[7] = m[0] * m[6] * m[11] -
m[0] * m[7] * m[10] -
m[4] * m[2] * m[11] +
m[4] * m[3] * m[10] +
m[8] * m[2] * m[7] -
m[8] * m[3] * m[6];
inv[11] = -m[0] * m[5] * m[11] +
m[0] * m[7] * m[9] +
m[4] * m[1] * m[11] -
m[4] * m[3] * m[9] -
m[8] * m[1] * m[7] +
m[8] * m[3] * m[5];
inv[15] = m[0] * m[5] * m[10] -
m[0] * m[6] * m[9] -
m[4] * m[1] * m[10] +
m[4] * m[2] * m[9] +
m[8] * m[1] * m[6] -
m[8] * m[2] * m[5];
det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12];
if (det == 0) {
mat4Copy(m, out); // singular matrix, can't invert
return;
}
det = 1.0 / det;
for (i = 0; i < 16; i++)
out[i] = inv[i] * det;
return;
}
/**
* subtracts b from a, storing the result in out
*/
void vec3Subtract(vec3 out, vec3 a, vec3 b) {
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
}
/**
* calculates the cross product of a and b, storing the result in out
*/
void vec3CrossProduct(vec3 out, vec3 a, vec3 b) {
vec3 result;
result[0] = a[1] * b[2] - a[2] * b[1];
result[1] = a[2] * b[0] - a[0] * b[2];
result[2] = a[0] * b[1] - a[1] * b[0];
out[0] = result[0];
out[1] = result[1];
out[2] = result[2];
}
/**
* normalizes in storing the result in out
*/
void vec3Normalise(vec3 out, vec3 in) {
GLfloat length = vec3Length(in);
out[0] = in[0] / length;
out[1] = in[1] / length;
out[2] = in[2] / length;
}
/**
* returns the length of the vector in
*/
GLfloat vec3Length(vec3 in) {
return sqrt(in[0] * in[0] + in[1] * in[1] + in[2] * in[2]);
}
/**
* returns the dot product of the vectors a and b
*/
GLfloat vec3DotProduct(vec3 a, vec3 b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
/**
* sets the values of out to x, y and z
*/
void vec3Set(vec3 out, GLfloat x, GLfloat y, GLfloat z) {
out[0] = x;
out[1] = y;
out[2] = z;
}
void vec3Multiply(vec3 out, vec3 in, GLfloat x) {
out[0] = in[0] * x;
out[1] = in[1] * x;
out[2] = in[2] * x;
}
void vec2Subtract(vec2 out, vec2 a, vec2 b) {
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
}
void mat3Copy(mat3 src, mat3 dst) {
for (int i = 0; i < 9; i++) {
dst[i] = src[i];
}
}
void mat3From4(mat3 out, mat4 in) {
memcpy(&out[0], &in[0], sizeof(GLfloat) * 3);
memcpy(&out[3], &in[4], sizeof(GLfloat) * 3);
memcpy(&out[6], &in[8], sizeof(GLfloat) * 3);
}
void mat3Transpose(mat3 out, mat3 in) {
mat3 result;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
result[i * 3 + j] = in[j * 3 + i];
}
}
mat3Copy(result, out);
}
void mat3Minor(mat3 out, mat3 in) {
mat3 result;
// TODO: check if this is correct
result[0] = in[4] * in[8] - in[5] * in[7];
result[1] = in[3] * in[8] - in[5] * in[6];
result[2] = in[3] * in[7] - in[4] * in[6];
result[3] = in[1] * in[8] - in[2] * in[7];
result[4] = in[0] * in[8] - in[2] * in[6];
result[5] = in[0] * in[7] - in[1] * in[6];
result[6] = in[1] * in[5] - in[2] * in[4];
result[7] = in[0] * in[5] - in[2] * in[3];
result[8] = in[0] * in[4] - in[1] * in[3];
mat3Copy(result, out);
}
void mat3Cofactor(mat3 out, mat3 in) {
mat3Minor(out, in);
out[1] *= -1;
out[3] *= -1;
out[5] *= -1;
out[7] *= -1;
}
void mat3Adjoint(mat3 out, mat3 in) {
mat3Cofactor(out, in);
mat3Transpose(out, in);
}
void mat3MultiplyScalar(mat3 out, mat3 in, GLfloat x) {
for (int i = 0; i < 9; i++) {
out[i] = in[i] * x;
}
}
GLfloat mat3Determinant(mat3 M) {
return
+ M[0] * M[4] * M[8]
+ M[3] * M[7] * M[2]
+ M[6] * M[1] * M[5]
- M[2] * M[4] * M[6]
- M[5] * M[7] * M[0]
- M[8] * M[1] * M[3]
;
}
void mat3Inverse(mat3 out, mat3 in) {
mat3 result;
mat3Adjoint(result, in);
mat3MultiplyScalar(result, result, 1 / mat3Determinant(in));
mat3Copy(result, out);
}

View File

@ -1,55 +0,0 @@
#ifndef MATRIX_MATH_H
#define MATRIX_MATH_H
#include <GL/gl.h>
/**
* !!! ALL matrices are in column major
*/
typedef GLfloat vec4[4];
typedef GLfloat vec3[3];
typedef GLfloat vec2[2];
typedef GLfloat mat4[16];
typedef GLfloat mat3[9];
extern void mat4Identity(mat4 mat);
extern void mat4Copy(mat4 src, mat4 dst);
extern void mat4Empty(mat4 mat);
extern void mat4Multiply(mat4 result, mat4 A, mat4 B);
extern void mat4Print(mat4 m);
extern void mat4Translate(mat4 out, mat4 in, vec3 v);
extern void mat4Scale(mat4 out, mat4 in, vec3 v);
extern void mat4RotateX(mat4 out, mat4 in, GLfloat a);
extern void mat4RotateY(mat4 out, mat4 in, GLfloat a);
extern void mat4RotateZ(mat4 out, mat4 in, GLfloat a);
extern void mat4BuildLookAt(mat4 out, vec3 eye, vec3 center, vec3 up);
extern void mat4BuildProjection(mat4 out, GLfloat r, GLfloat l, GLfloat t, GLfloat b, GLfloat n, GLfloat f);
extern void mat4BuildPerspective(mat4 out, GLfloat fovy, GLfloat aspect, GLfloat n, GLfloat f);
extern void mat4Interpolate(mat4 out, mat4 a, mat4 b, GLfloat f);
extern void mat4From3(mat4 out, mat3 in);
extern void mat4Inverse(mat4 m, mat4 out);
extern void vec3Subtract(vec3 out, vec3 a, vec3 b);
extern void vec3CrossProduct(vec3 out, vec3 a, vec3 b);
extern void vec3Normalise(vec3 out, vec3 in);
extern GLfloat vec3Length(vec3 in);
extern GLfloat vec3DotProduct(vec3 a, vec3 b);
extern void vec3Set(vec3 out, GLfloat x, GLfloat y, GLfloat z);
extern void vec3Multiply(vec3 out, vec3 in, GLfloat x);
extern void vec2Subtract(vec2 out, vec2 a, vec2 b);
extern void mat3Copy(mat3 src, mat3 dst);
extern void mat3Inverse(mat3 out, mat3 in);
extern GLfloat mat3Determinant(mat3 m);
extern void mat3MultiplyScalar(mat3 out, mat3 in, GLfloat x);
extern void mat3Adjoint(mat3 out, mat3 in);
extern void mat3Cofactor(mat3 out, mat3 in);
extern void mat3Minor(mat3 out, mat3 in);
extern void mat3Transpose(mat3 out, mat3 in);
extern void mat3From4(mat3 out, mat4 in);
#endif

View File

@ -73,8 +73,6 @@ ShaderCompileResult readAndCompileShaderFromFile(const char* filepath, GLenum sh
result.success = true; result.success = true;
} }
free((void*)shaderSource);
return result; // Return the ShaderCompileResult struct return result; // Return the ShaderCompileResult struct
} }
@ -116,27 +114,4 @@ ProgramLinkResult linkShaderProgram(GLuint vertexShader, GLuint fragmentShader)
result.success = true; result.success = true;
return result; return result;
} }
ProgramLinkResult buildShaderProgram(const char* vertexShaderPath, const char* fragmentShaderPath) {
ProgramLinkResult result = { .success = false, .program = 0 };
ShaderCompileResult vertexShader = readAndCompileShaderFromFile(vertexShaderPath, GL_VERTEX_SHADER);
if (!vertexShader.success) {
FATAL("Failed to compile vertex shader");
return result;
}
ShaderCompileResult fragmentShader = readAndCompileShaderFromFile(fragmentShaderPath, GL_FRAGMENT_SHADER);
if (!fragmentShader.success) {
FATAL("Failed to compile fragment shader");
return result;
}
result = linkShaderProgram(vertexShader.shader, fragmentShader.shader);
glDeleteShader(vertexShader.shader);
glDeleteShader(fragmentShader.shader);
return result;
}

View File

@ -17,6 +17,5 @@ typedef struct {
extern const char* readFileToMemory(const char* filepath); extern const char* readFileToMemory(const char* filepath);
extern ShaderCompileResult readAndCompileShaderFromFile(const char* filepath, GLenum shaderType); extern ShaderCompileResult readAndCompileShaderFromFile(const char* filepath, GLenum shaderType);
extern ProgramLinkResult linkShaderProgram(GLuint vertexShader, GLuint fragmentShader); extern ProgramLinkResult linkShaderProgram(GLuint vertexShader, GLuint fragmentShader);
extern ProgramLinkResult buildShaderProgram(const char* vertexShaderPath, const char* fragmentShaderPath);
#endif // SHADER_H #endif // SHADER_H

View File

@ -1,6 +1,5 @@
#version 330 core #version 330 core
in vec3 vNormal; in vec3 vertexColor;
void main() { void main() {
gl_FragColor = vec4(vNormal * 0.5 + vec3(0.5), 1.0); gl_FragColor = vec4(vertexColor, 1.0);
} }

View File

@ -1,12 +1,10 @@
#version 330 core #version 330 core
layout (location = 0) in vec3 aPosition; layout (location = 0) in vec2 aPosition;
layout (location = 1) in vec3 aNormal; layout (location = 1) in vec3 aColor;
uniform mat4 uModelView;
uniform mat4 uProjection;
out vec3 vNormal; out vec3 vertexColor;
void main() { void main() {
vNormal = aNormal; vertexColor = aColor;
gl_Position = uProjection * uModelView * vec4(aPosition, 1.0); gl_Position = vec4(aPosition, 0.0, 1.0);
} }

View File

@ -1,242 +0,0 @@
#include <GL/glew.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "wavefrontobj.h"
#define OBJ_LINE_BUFFER_SIZE 256
/**
*
* ADJUSTMENT NEEDED FOR
* - Face Definitions other than vertex/texture/normal
* - Vertex positions including w
* - Any faces using vertices yet to be defined
* (File is read top to bottom. A face using a vertex
* defined underneath it in the file will not work)
*
*/
void storeFace(
face* f,
vec3 v1, vec2 vt1, vec3 vn1,
vec3 v2, vec2 vt2, vec3 vn2,
vec3 v3, vec2 vt3, vec3 vn3
) {
memcpy(&f->v1.position, v1, sizeof(vec3));
memcpy(&f->v2.position, v2, sizeof(vec3));
memcpy(&f->v3.position, v3, sizeof(vec3));
memcpy(&f->v1.normal, vn1, sizeof(vec3));
memcpy(&f->v2.normal, vn2, sizeof(vec3));
memcpy(&f->v3.normal, vn3, sizeof(vec3));
memcpy(&f->v1.texture, vt1, sizeof(vec2));
memcpy(&f->v2.texture, vt2, sizeof(vec2));
memcpy(&f->v3.texture, vt3, sizeof(vec2));
}
// void storeTB(face* f,
// vec3 v1, vec2 vt1, vec3 vn1,
// vec3 v2, vec2 vt2, vec3 vn2,
// vec3 v3, vec2 vt3, vec3 vn3
// ) {
// // https://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/
// vec3 deltaPos1;
// vec3 deltaPos2;
// vec3Subtract(deltaPos1, v2, v1);
// vec3Subtract(deltaPos1, v3, v1);
// vec2 deltaTex1;
// vec2 deltaTex2;
// vec2Subtract(deltaTex1, vt2, vt1);
// vec2Subtract(deltaTex2, vt3, vt1);
// GLfloat r = 1.0f / (deltaTex1[0] * deltaTex2[1] - deltaTex1[1] * deltaTex2[0]);
// vec3Multiply(deltaPos1, deltaPos1, deltaTex2[1]);
// vec3Multiply(deltaPos2, deltaPos2, deltaTex1[1]);
// vec3 tangent;
// vec3Subtract(tangent, deltaPos1, deltaPos2);
// vec3Multiply(tangent, tangent, r);
// memcpy(&f->v1.tangent, &tangent, sizeof(vec3));
// memcpy(&f->v2.tangent, &tangent, sizeof(vec3));
// memcpy(&f->v3.tangent, &tangent, sizeof(vec3));
// }
ParsedObjFile readObjFile(char* path) {
ParsedObjFile parsedFile;
FILE* fp = fopen(path, "r");
if (fp == NULL) {
fprintf(stderr, "File could not be opened: %s", path);
parsedFile.faces = NULL;
parsedFile.length = 0;
}
uint numVertices = 0;
uint numVertexNormals = 0;
uint numFaces = 0;
uint numTextureCoords = 0;
char buf[OBJ_LINE_BUFFER_SIZE];
while (fgets(buf, OBJ_LINE_BUFFER_SIZE, fp)) {
if (buf[0] == 'v') {
if (buf[1] == ' ') {
numVertices++;
} else if (buf[1] == 't') {
numTextureCoords++;
} else if (buf[1] == 'n') {
numVertexNormals++;
}
}
if (buf[0] == 'f') {
int numSpaces = 0;
for (int i = 0; i < strlen(buf); i++) {
if (buf[i] == ' ') {
numSpaces++;
}
}
numFaces += numSpaces - 2;
}
}
// printf("Vertices: %d\nFaces: %d\nNormals:%d\nTextures:%d\n", numVertices, numFaces, numVertexNormals, numTextureCoords);
vec3* vertices = (vec3*) malloc(sizeof(vec3) * numVertices);
vec3* normals = (vec3*) malloc(sizeof(vec3) * numVertexNormals);
vec2* textures = (vec2*) malloc(sizeof(vec2) * numTextureCoords);
face* faces = (face*) malloc(sizeof(face) * numFaces);
parsedFile.faces = faces;
parsedFile.length = numFaces;
rewind(fp);
uint curVertex = 0;
uint curNormal = 0;
uint curFace = 0;
uint curTexture = 0;
while (fgets(buf, OBJ_LINE_BUFFER_SIZE, fp)) {
if (buf[0] == 'v') {
if (buf[1] == ' ') {
sscanf(buf,
"v %f %f %f",
&vertices[curVertex][0],
&vertices[curVertex][1],
&vertices[curVertex][2]
);
curVertex++;
} else if (buf[1] == 't') {
int readValues = sscanf(buf,
"vt %f %f",
&textures[curTexture][0],
&textures[curTexture][1]
);
if (readValues != 2) {
textures[curTexture][1] = 0;
}
curTexture++;
} else if (buf[1] == 'n') {
sscanf(buf,
"vn %f %f %f",
&normals[curNormal][0],
&normals[curNormal][1],
&normals[curNormal][2]
);
curNormal++;
}
}
if (buf[0] == 'f') {
int v1, v2, v3;
int vt1, vt2, vt3;
int vn1, vn2, vn3;
sscanf(buf,
"f %d/%d/%d %d/%d/%d %d/%d/%d",
&v1, &vt1, &vn1,
&v2, &vt2, &vn2,
&v3, &vt3, &vn3
);
storeFace(&faces[curFace],
vertices[v1 - 1], textures[vt1 - 1], normals[vn1 - 1],
vertices[v2 - 1], textures[vt2 - 1], normals[vn2 - 1],
vertices[v3 - 1], textures[vt3 - 1], normals[vn3 - 1]
);
// storeTB(&faces[curFace],
// vertices[v1 - 1], textures[vt1 - 1], normals[vn1 - 1],
// vertices[v2 - 1], textures[vt2 - 1], normals[vn2 - 1],
// vertices[v3 - 1], textures[vt3 - 1], normals[vn3 - 1]
// );
curFace++;
int numSpaces = 0;
for (int i = 0; i < strlen(buf); i++) {
if (buf[i] == ' ') {
numSpaces++;
}
}
if (numSpaces == 4) {
// storeTB(&faces[curFace],
// vertices[v1 - 1], textures[vt1 - 1], normals[vn1 - 1],
// vertices[v2 - 1], textures[vt2 - 1], normals[vn2 - 1],
// vertices[v3 - 1], textures[vt3 - 1], normals[vn3 - 1]
// );
sscanf(buf,
"f %d/%d/%d %*d/%*d/%*d %d/%d/%d %d/%d/%d",
&v1, &vt1, &vn1,
&v2, &vt2, &vn2,
&v3, &vt3, &vn3
);
storeFace(&faces[curFace],
vertices[v1 - 1], textures[vt1 - 1], normals[vn1 - 1],
vertices[v2 - 1], textures[vt2 - 1], normals[vn2 - 1],
vertices[v3 - 1], textures[vt3 - 1], normals[vn3 - 1]
);
curFace++;
}
// TODO: textures
}
}
free(vertices);
free(normals);
fclose(fp);
return parsedFile;
}
void clearParsedFile(ParsedObjFile file) {
free(file.faces);
}

View File

@ -1,30 +0,0 @@
#ifndef WAVEFRONTOBJ_H
#define WAVEFRONTOBJ_H
#include <GL/glew.h>
#include "matrix-math.h"
typedef struct {
vec3 position;
vec3 normal;
vec2 texture;
// vec3 tangent;
} vertex;
typedef struct {
vertex v1;
vertex v2;
vertex v3;
} face;
typedef struct {
face* faces;
GLuint length;
} ParsedObjFile;
extern ParsedObjFile readObjFile(char* path);
extern void clearParsedFile(ParsedObjFile file);
#endif