FPS: -
Use virtual camera:
Backface Culling:
$$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} $$
$$\dot{}$$
$$ \begin{pmatrix} \frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{2}{f-n} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} $$
$$\dot{}$$
$$ \begin{pmatrix} 1 & 0 & 0 & - \frac{r+l}{2} \\ 0 & 1 & 0 & - \frac{t+b}{2} \\ 0 & 0 & 1 & \frac{n+f}{2} \\ 0 & 0 & 0 & 1 \end{pmatrix} $$
$$\dot{}$$
$$ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 + \frac{f}{n} & f \\ 0 & 0 & - \frac{1}{n} & 0 \end{pmatrix} $$
$$\dot{}$$
$$ \begin{pmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ n_x & n_y & n_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} $$
$$\dot{}$$
$$ \begin{pmatrix} 1 & 0 & 0 & -e_x \\ 0 & 1 & 0 & -e_y \\ 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 \end{pmatrix} $$
$$\dot{}$$
$$ \begin{pmatrix} cos(\alpha) & -sin(\alpha) & 0 & 0 \\ sin(\alpha) & cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} $$
$$\dot{}$$
$$ \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} $$