#include #include #include #include "vertexShader.c" #include "fragmentShader.c" #include "objectHandler.h" #include "matrixMath.h" #include "transformation.h" #include "wavefrontobj.h" #include "sceneGraph.h" #include #include #include #include GLuint program; #define NUM_TEXTURES 5 #define DAY 0 #define NIGHT 1 #define CLOUDS 2 #define OCEAN 3 #define NORMAL 4 int flipFlag = 1; bool exitRequested = false; GLFWwindow* window; GLfloat aspectRatio = 1.0f; double timeBetweenUpdates = 0.2f; double timeSinceUpdate = 0.0f; int framesSinceUpdate = 0; GLfloat step = 0.0f; const GLfloat pi = 3.14159f; vec3 cameraPosition = {0.0f, 3.0f, 5.5f}; vec3 objectPosition = {0.0f, 0.0f, 0.0f}; GLfloat radius = 1.0f; mat4 viewingTransformation; // Define a global scene graph root node SceneNode* rootNode; /** * Input handler for camera movement. * */ void handleInputs(double deltaTime) { if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS) { cameraPosition.z += deltaTime * 10; } if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS) { cameraPosition.z -= deltaTime * 10; } if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS) { cameraPosition.x += deltaTime * 10; } if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS) { cameraPosition.x -= deltaTime * 10; } if (glfwGetKey(window, GLFW_KEY_F) == GLFW_PRESS) { cameraPosition.y += deltaTime * 10; } if (glfwGetKey(window, GLFW_KEY_R) == GLFW_PRESS) { cameraPosition.y -= deltaTime * 10; } if (glfwGetKey(window, GLFW_KEY_L) == GLFW_PRESS) { objectPosition.x += deltaTime * 10; } if (glfwGetKey(window, GLFW_KEY_J) == GLFW_PRESS) { objectPosition.x -= deltaTime * 10; } if (glfwGetKey(window, GLFW_KEY_I) == GLFW_PRESS) { objectPosition.z += deltaTime * 10; } if (glfwGetKey(window, GLFW_KEY_K) == GLFW_PRESS) { objectPosition.z -= deltaTime * 10; } if (glfwGetKey(window, GLFW_KEY_O) == GLFW_PRESS) { radius += deltaTime * 10; } if (glfwGetKey(window, GLFW_KEY_U) == GLFW_PRESS) { radius -= deltaTime * 10; } } // input handler to quit with ESC void keyboardHandler(GLFWwindow* window, int key, int scancode, int action, int mods) { if (action == GLFW_PRESS) { if (key == GLFW_KEY_ESCAPE) { exitRequested = true; } } } void renderNode(SceneNode* node) { if (!node->model) return; mat4 modelView; identity(&modelView); multiply(&modelView, &node->worldTransformation, &modelView); multiply(&modelView, &viewingTransformation, &modelView); // calculate matrix for normals mat3 normalModelView; mat3From4(&normalModelView, &modelView); mat3Inverse(&normalModelView, &normalModelView); mat3Transpose(&normalModelView, &normalModelView); // send transformation matrix to shader glUniformMatrix4fv(glGetUniformLocation(program, "modelView"), 1, GL_FALSE, (GLfloat*)&modelView); glUniformMatrix3fv(glGetUniformLocation(program, "normalModelView"), 1, GL_FALSE, (GLfloat*)&normalModelView); // SET MATERIAL DATA glUniform1f(glGetUniformLocation(program, "shininess"), 60.0f * 4.0f); // BIND TEXTURES GLuint textureLocation; textureLocation = glGetUniformLocation(program, "textureSampler"); glUniform1i(textureLocation, 0); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, node->model->texture); // textureLocation = glGetUniformLocation(program, "normalMap"); // glUniform1i(textureLocation, 4); // glActiveTexture(GL_TEXTURE4); // glBindTexture(GL_TEXTURE_2D, textures[NORMAL]); draw_object(node->model->objectData); } void init(void) { // create and compile vertex shader const GLchar *vertexTextConst = vertexShader_glsl; GLuint vertexShader = glCreateShader(GL_VERTEX_SHADER); glShaderSource(vertexShader, 1, &vertexTextConst, &vertexShader_glsl_len); glCompileShader(vertexShader); GLint status; glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &status); if (!status) { printf("Error compiling vertex shader: "); GLchar infoLog[1024]; glGetShaderInfoLog(vertexShader, 1024, NULL, infoLog); printf("%s",infoLog); exit(1); } vertexTextConst = NULL; // create and compile fragment shader const GLchar *fragmentTextConst = fragmentShader_glsl; GLuint fragmentShader = glCreateShader(GL_FRAGMENT_SHADER); glShaderSource(fragmentShader, 1, &fragmentTextConst, &fragmentShader_glsl_len); glCompileShader(fragmentShader); glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &status); if (!status) { printf("Error compiling fragment shader: "); GLchar infoLog[1024]; glGetShaderInfoLog(fragmentShader, 1024, NULL, infoLog); printf("%s",infoLog); exit(1); } // create and link shader program program = glCreateProgram(); glAttachShader(program, vertexShader); glAttachShader(program, fragmentShader); glLinkProgram(program); glGetProgramiv(program, GL_LINK_STATUS, &status); if (!status) { printf("Error linking program: "); GLchar infoLog[1024]; glGetProgramInfoLog(program, 1024, NULL, infoLog); printf("%s",infoLog); exit(1); } glValidateProgram(program); glGetProgramiv(program, GL_VALIDATE_STATUS, &status); if (!status) { printf("Error validating program: "); GLchar infoLog[1024]; glGetProgramInfoLog(program, 1024, NULL, infoLog); printf("%s",infoLog); exit(1); } stbi_set_flip_vertically_on_load(flipFlag); // --------------- READ SCENE GRAPH setNodeRenderFunction(&renderNode); // read scene graph rootNode = loadSceneGraphFromFile("../scene-graph.scg"); // ENABLE BACKFACE CULLING glFrontFace(GL_CCW); glEnable(GL_CULL_FACE); // ENABLE DEPTH BUFFER glEnable(GL_DEPTH_TEST); glClearColor(0.1f, 0.1f, 0.1f, 1.0f); } void updateStats() { printf("\rFPS: %.1f", framesSinceUpdate / timeSinceUpdate); printf(" - Camera Position: [%f, %f, %f]", cameraPosition.x, cameraPosition.y, cameraPosition.z); fflush(stdout); } /** * Main draw function. */ void draw(void) { // FPS Counter framesSinceUpdate++; double deltaTime = glfwGetTime(); timeSinceUpdate += deltaTime; glfwSetTime(0.0f); if (timeSinceUpdate >= timeBetweenUpdates) { updateStats(); timeSinceUpdate = 0.0f; framesSinceUpdate = 0; } // camera movement handleInputs(deltaTime); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glUseProgram(program); // step for rotations // counts up to 1.0 and then resets back to 0.0 forever step += deltaTime / 15; if (step > 1.0f) step -= 1.0f; if (step < 0.0f) step += 1.0f; //SceneNode* box3 = findNodeByName("box3", rootNode); //rotateY(&box3->transformation, &box3->transformation, 0.001); //updateSceneNode(rootNode, NULL); // step multiplied by pi * 2 for use in rotation and trig functions GLfloat stepi = step * pi * 2; // ------------- VIEWING TRANSFORMATION ------------------- vec3 origin = {0.0f, 0.0f, 0.0f}; vec3 up = {0.0f, 1.0f, 0.0f}; lookAt(&viewingTransformation, &cameraPosition, &origin, &up); // -------------- PROJECTION TRANSFORMATION ---------------- mat4 projectionTransformation; GLfloat near = 0.1f; GLfloat far = 20.0f; perspectiveProjection(&projectionTransformation, near, far); // -------------- NORMALISATION TRANSFORMATION ------------- mat4 normalisationTransformation; GLfloat fovy = pi / 2; normalisedDeviceCoordinatesFov(&normalisationTransformation, fovy, aspectRatio, near, far); mat4 projection; identity(&projection); multiply(&projection, &projectionTransformation, &projection); multiply(&projection, &normalisationTransformation, &projection); glUniformMatrix4fv(glGetUniformLocation(program, "projection"), 1, GL_FALSE, (GLfloat*)&projection); // SET LIGHT DATA glUniform4f(glGetUniformLocation(program, "lightColor"), 1.0f, 1.0f, 1.0f, 1.0f); glUniform4f(glGetUniformLocation(program, "ambientLight"), 0.05f, 0.05f, 0.05f, 1.0f); vec4 lightPosition = {cos(stepi) * 5.0f, 5.0f, sin(stepi) * 5.0f, 1.0f}; multiplyAny((GLfloat*)&lightPosition, (GLfloat*)&viewingTransformation, (GLfloat*)&lightPosition, 4, 4, 1); glUniform3f(glGetUniformLocation(program, "lightPosition"), lightPosition.x, lightPosition.y, lightPosition.z); renderSceneNode(rootNode); } /** * Changes viewport size and adjust aspect ratio when changing window size */ void framebuffer_size_callback(GLFWwindow *window, int width, int height) { glViewport(0, 0, width, height); aspectRatio = (float)width / height; } /** * Main function. */ int main(int argc, char **argv) { // initialise window glfwInit(); glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3); glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); window = glfwCreateWindow(700, 700, "Computergrafik 1", NULL, NULL); if (!window) { printf("Failed to create window\n"); glfwTerminate(); return -1; } glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); glfwMakeContextCurrent(window); // disable framerate cap glfwSwapInterval(0); // register keyboard event handler glfwSetKeyCallback(window, keyboardHandler); // initialise glew glewInit(); printf("OpenGL version supported by this platform (%s):\n", glGetString(GL_VERSION)); init(); // exit when window should close or exit is requested (ESC) while (!glfwWindowShouldClose(window) && !exitRequested) { draw(); glfwSwapBuffers(window); glfwPollEvents(); } glfwTerminate(); return 0; }